644 research outputs found

    Energy Modelling and Calibration of Building Simulations: A Case Study of a Domestic Building with Natural Ventilation

    Get PDF
    [EN] In this paper, the building energy performance modelling tools TRNSYS (TRaNsient SYstem Simulation program) and TRNFlow (TRaNsient Flow) have been used to obtain the energy demand of a domestic building that includes the air infiltration rate and the effect of natural ventilation by using window operation data. An initial model has been fitted to monitoring data from the case study, building over a period when there were no heat gains in the building in order to obtain the building infiltration air change rate. After this calibration, a constant air-change rate model was established alongside two further models developed in the calibration process. Air change rate has been explored in order to determine air infiltrations caused by natural ventilation due to windows being opened. These results were compared to estimates gained through a previously published method and were found to be in good agreement. The main conclusion from the work was that the modelling ventilation rate in naturally ventilated residential buildings using TRNSYS and TRNSFlow can improve the simulation-based energy assessment.Aparicio-Fernández, C.; Vivancos, J.; Cosar-Jorda, P.; Buswell, RA. (2019). Energy Modelling and Calibration of Building Simulations: A Case Study of a Domestic Building with Natural Ventilation. Energies. 12(17):1-13. https://doi.org/10.3390/en12173360S1131217Grygierek, K., & Ferdyn-Grygierek, J. (2018). Multi-Objective Optimization of the Envelope of Building with Natural Ventilation. Energies, 11(6), 1383. doi:10.3390/en11061383Moran, P., Goggins, J., & Hajdukiewicz, M. (2017). Super-insulate or use renewable technology? Life cycle cost, energy and global warming potential analysis of nearly zero energy buildings (NZEB) in a temperate oceanic climate. Energy and Buildings, 139, 590-607. doi:10.1016/j.enbuild.2017.01.029Allouhi, A., El Fouih, Y., Kousksou, T., Jamil, A., Zeraouli, Y., & Mourad, Y. (2015). Energy consumption and efficiency in buildings: current status and future trends. Journal of Cleaner Production, 109, 118-130. doi:10.1016/j.jclepro.2015.05.139Cosar-Jorda, P., Buswell, R. A., & Mitchell, V. A. (2018). Determining of the role of ventilation in residential energy demand reduction using a heat-balance approach. Building and Environment, 144, 508-518. doi:10.1016/j.buildenv.2018.08.053Feijó-Muñoz, J., Poza-Casado, I., González-Lezcano, R. A., Pardal, C., Echarri, V., Assiego De Larriva, R., … Meiss, A. (2018). Methodology for the Study of the Envelope Airtightness of Residential Buildings in Spain: A Case Study. Energies, 11(4), 704. doi:10.3390/en11040704Domínguez-Amarillo, S., Fernández-Agüera, J., Campano, M. Á., & Acosta, I. (2019). Effect of Airtightness on Thermal Loads in Legacy Low-Income Housing. Energies, 12(9), 1677. doi:10.3390/en12091677Cheng, P. L., & Li, X. (2018). Air infiltration rates in the bedrooms of 202 residences and estimated parametric infiltration rate distribution in Guangzhou, China. Energy and Buildings, 164, 219-225. doi:10.1016/j.enbuild.2017.12.062Hou, J., Zhang, Y., Sun, Y., Wang, P., Zhang, Q., Kong, X., & Sundell, J. (2018). Air change rates at night in northeast Chinese homes. Building and Environment, 132, 273-281. doi:10.1016/j.buildenv.2018.01.030Zhai, Z. (John), Mankibi, M. E., & Zoubir, A. (2015). Review of Natural Ventilation Models. Energy Procedia, 78, 2700-2705. doi:10.1016/j.egypro.2015.11.355Han, G., Srebric, J., & Enache-Pommer, E. (2015). Different modeling strategies of infiltration rates for an office building to improve accuracy of building energy simulations. Energy and Buildings, 86, 288-295. doi:10.1016/j.enbuild.2014.10.028Laverge, J., & Janssens, A. (2013). Optimization of design flow rates and component sizing for residential ventilation. Building and Environment, 65, 81-89. doi:10.1016/j.buildenv.2013.03.019Bhandari, M., Hun, D., Shrestha, S., Pallin, S., & Lapsa, M. (2018). A Simplified Methodology to Estimate Energy Savings in Commercial Buildings from Improvements in Airtightness. Energies, 11(12), 3322. doi:10.3390/en11123322Pisello, A. L., Castaldo, V. L., Taylor, J. E., & Cotana, F. (2016). The impact of natural ventilation on building energy requirement at inter-building scale. Energy and Buildings, 127, 870-883. doi:10.1016/j.enbuild.2016.06.023Tronchin, L., Fabbri, K., & Bertolli, C. (2018). Controlled Mechanical Ventilation in Buildings: A Comparison between Energy Use and Primary Energy among Twenty Different Devices. Energies, 11(8), 2123. doi:10.3390/en11082123Ashdown, M. M. A., Crawley, J., Biddulph, P., Wingfield, J., Lowe, R., & Elwell, C. A. (2019). Characterising the airtightness of dwellings. International Journal of Building Pathology and Adaptation, 38(1), 89-106. doi:10.1108/ijbpa-02-2019-0024Crawley, J., Wingfield, J., & Elwell, C. (2018). The relationship between airtightness and ventilation in new UK dwellings. Building Services Engineering Research and Technology, 40(3), 274-289. doi:10.1177/0143624418822199Jones, B., Das, P., Chalabi, Z., Davies, M., Hamilton, I., Lowe, R., … Taylor, J. (2015). Assessing uncertainty in housing stock infiltration rates and associated heat loss: English and UK case studies. Building and Environment, 92, 644-656. doi:10.1016/j.buildenv.2015.05.033Schulze, T., & Eicker, U. (2013). Controlled natural ventilation for energy efficient buildings. Energy and Buildings, 56, 221-232. doi:10.1016/j.enbuild.2012.07.044Stavridou, A. D., & Prinos, P. E. (2017). Unsteady CFD Simulation in a Naturally Ventilated Room with a Localized Heat Source. Procedia Environmental Sciences, 38, 322-330. doi:10.1016/j.proenv.2017.03.087LEEDR Project Home Energy Datasethttps://repository.lboro.ac.uk/articles/LEEDR_project_home_energy_dataset/6176450Met Office Integrated Data Archive System (MIDAS) Land and Marine Surface Stations Data (1853-current)http://catalogue.ceda.ac.uk/uuid/220a65615218d5c9cc9e4785a3234bd0Buswell, R., Webb, L., Mitchell, V., & Leder Mackley, K. (2016). Multidisciplinary research: should effort be the measure of success? Building Research & Information, 45(5), 539-555. doi:10.1080/09613218.2016.1194601National Grid UKhttps://www.nationalgrid.com/uk/gas/market-operations-and-data/calorific-value-cvHome Heating Guide: Boiler Efficiency Tableshttps://www.homeheatingguide.co.uk/efficiency-tablesRuiz, G., & Bandera, C. (2017). Validation of Calibrated Energy Models: Common Errors. Energies, 10(10), 1587. doi:10.3390/en10101587Hong, T., Piette, M. A., Chen, Y., Lee, S. H., Taylor-Lange, S. C., Zhang, R., … Price, P. (2015). Commercial Building Energy Saver: An energy retrofit analysis toolkit. Applied Energy, 159, 298-309. doi:10.1016/j.apenergy.2015.09.002Nasir, Z. A., & Colbeck, I. (2013). Particulate pollution in different housing types in a UK suburban location. Science of The Total Environment, 445-446, 165-176. doi:10.1016/j.scitotenv.2012.12.042Dimitroulopoulou, C. (2012). Ventilation in European dwellings: A review. Building and Environment, 47, 109-125. doi:10.1016/j.buildenv.2011.07.01

    Effect of different compatibilizers on environmentally friendly composites from poly(lactic acid) and diatomaceous earth

    Full text link
    [EN] Environmentally friendly composites from poly(lactic acid) (PLA) and diatomaceous earth (DE) were successfully manufactured by extrusion, followed by injection moulding. DE was used as a filler; several compatibilizer/coupling agents, namely (3-glycidyloxypropyl)trimethoxysilane, epoxy styrene acrylic oligomer and maleinized linseed oil, were used to improve polymer¿filler interactions. Mechanical characterization was carried out by standard tensile, impact and hardness tests while morphological characterization of the fractured surfaces was conducted by field emission scanning electron microscopy. The effect of DE was evaluated by differential scanning calorimetry and dynamic mechanical thermal behaviour. The results show that the addition of DE provides an improved tensile modulus and induces more brittle composites due to stress concentration phenomena. The addition of compatibilizers in PLA-DE positively contributes to improve ductile properties, thus leading to high environmental efficiency materials with balancedmechanical properties. Specifically, the compatibility improvement between the PLA and DE was good with maleinized linseed oil and contributed to improving the impact strength, which is a key factor in PLA-based composites due to the intrinsic brittleness of neat PLA.This research was supported by the Spanish Ministry of Economy and Competitiveness (MINECO) program number MAT2017-84909-C2-2-R. L. Quiles-Carrillo wants to thank GV for his FPI grant (ACIF/2016/182) and the MECD for his FPU grant (FPU15/03812).Agüero-Rodríguez, Á.; Quiles-Carrillo, L.; Jorda-Vilaplana, A.; Fenollar, O.; Montanes, N. (2019). Effect of different compatibilizers on environmentally friendly composites from poly(lactic acid) and diatomaceous earth. Polymer International. 68(5):893-903. https://doi.org/10.1002/pi.5779S893903685Tornuk, F., Hancer, M., Sagdic, O., & Yetim, H. (2015). LLDPE based food packaging incorporated with nanoclays grafted with bioactive compounds to extend shelf life of some meat products. LWT - Food Science and Technology, 64(2), 540-546. doi:10.1016/j.lwt.2015.06.030Kuswandi, B., Jayus, Restyana, A., Abdullah, A., Heng, L. Y., & Ahmad, M. (2012). A novel colorimetric food package label for fish spoilage based on polyaniline film. Food Control, 25(1), 184-189. doi:10.1016/j.foodcont.2011.10.008Kuswandi, B. (2017). Environmental friendly food nano-packaging. Environmental Chemistry Letters, 15(2), 205-221. doi:10.1007/s10311-017-0613-7Horodytska, O., Valdés, F. J., & Fullana, A. (2018). Plastic flexible films waste management – A state of art review. Waste Management, 77, 413-425. doi:10.1016/j.wasman.2018.04.023Trongsatitkul, T., & Chaiwong, S. (2017). In situ fibre-reinforced composite films of poly(lactic acid)/low-density polyethylene blends: effects of composition on morphology, transport and mechanical properties. Polymer International, 66(11), 1456-1462. doi:10.1002/pi.5449Sanyang, M. L., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Sahari, J. (2016). Development and characterization of sugar palm starch and poly(lactic acid) bilayer films. Carbohydrate Polymers, 146, 36-45. doi:10.1016/j.carbpol.2016.03.051Brandelli, A., Brum, L. F. W., & dos Santos, J. H. Z. (2017). Nanostructured bioactive compounds for ecological food packaging. Environmental Chemistry Letters, 15(2), 193-204. doi:10.1007/s10311-017-0621-7Rhim, J.-W., Park, H.-M., & Ha, C.-S. (2013). Bio-nanocomposites for food packaging applications. Progress in Polymer Science, 38(10-11), 1629-1652. doi:10.1016/j.progpolymsci.2013.05.008Kumar, S., & Maiti, P. (2015). Understanding the controlled biodegradation of polymers using nanoclays. Polymer, 76, 25-33. doi:10.1016/j.polymer.2015.08.044Yahiaoui, F., Benhacine, F., Ferfera-Harrar, H., Habi, A., Hadj-Hamou, A. S., & Grohens, Y. (2014). Development of antimicrobial PCL/nanoclay nanocomposite films with enhanced mechanical and water vapor barrier properties for packaging applications. Polymer Bulletin, 72(2), 235-254. doi:10.1007/s00289-014-1269-0Ibarguren, C., Naranjo, P. M., Stötzel, C., Audisio, M. C., Sham, E. L., Farfán Torres, E. M., & Müller, F. A. (2014). Adsorption of nisin on raw montmorillonite. Applied Clay Science, 90, 88-95. doi:10.1016/j.clay.2013.12.031Kuswandi, B. (2016). Nanotechnology in Food Packaging. Sustainable Agriculture Reviews, 151-183. doi:10.1007/978-3-319-39303-2_6Wróblewska-Krepsztul, J., Rydzkowski, T., Borowski, G., Szczypiński, M., Klepka, T., & Thakur, V. K. (2018). Recent progress in biodegradable polymers and nanocomposite-based packaging materials for sustainable environment. International Journal of Polymer Analysis and Characterization, 23(4), 383-395. doi:10.1080/1023666x.2018.1455382Gorrasi, G., Tortora, M., Vittoria, V., Pollet, E., Lepoittevin, B., Alexandre, M., & Dubois, P. (2003). Vapor barrier properties of polycaprolactone montmorillonite nanocomposites: effect of clay dispersion. Polymer, 44(8), 2271-2279. doi:10.1016/s0032-3861(03)00108-3Pasbakhsh, P., De Silva, R., Vahedi, V., & Jock Churchman, G. (2016). Halloysite nanotubes: prospects and challenges of their use as additives and carriers – A focused review. Clay Minerals, 51(3), 479-487. doi:10.1180/claymin.2016.051.3.15Bendahou, D., Bendahou, A., Grohens, Y., & Kaddami, H. (2015). New nanocomposite design from zeolite and poly(lactic acid). Industrial Crops and Products, 72, 107-118. doi:10.1016/j.indcrop.2014.12.055Lorite, G. S., Rocha, J. M., Miilumäki, N., Saavalainen, P., Selkälä, T., Morales-Cid, G., … Toth, G. (2017). Evaluation of physicochemical/microbial properties and life cycle assessment (LCA) of PLA-based nanocomposite active packaging. LWT, 75, 305-315. doi:10.1016/j.lwt.2016.09.004Cacciotti, I., Mori, S., Cherubini, V., & Nanni, F. (2018). Eco-sustainable systems based on poly(lactic acid), diatomite and coffee grounds extract for food packaging. International Journal of Biological Macromolecules, 112, 567-575. doi:10.1016/j.ijbiomac.2018.02.018Davoudizadeh, S., Ghasemi, M., Khezri, K., & Bahadorikhalili, S. (2017). Poly(styrene-co-butyl acrylate)/mesoporous diatomaceous earth mineral nanocomposites by in situ AGET ATRP. Journal of Thermal Analysis and Calorimetry, 131(3), 2513-2521. doi:10.1007/s10973-017-6771-9Aw, M. S., Simovic, S., Yu, Y., Addai-Mensah, J., & Losic, D. (2012). Porous silica microshells from diatoms as biocarrier for drug delivery applications. Powder Technology, 223, 52-58. doi:10.1016/j.powtec.2011.04.023Medarevic, D., Losic, D., & Ibric, S. (2016). Diatoms - nature materials with great potential for bioapplications. Hemijska industrija, 70(6), 613-627. doi:10.2298/hemind150708069mÖzen, İ., Şimşek, S., & Okyay, G. (2015). Manipulating surface wettability and oil absorbency of diatomite depending on processing and ambient conditions. Applied Surface Science, 332, 22-31. doi:10.1016/j.apsusc.2015.01.149Torres-Giner, S., Montanes, N., Boronat, T., Quiles-Carrillo, L., & Balart, R. (2016). Melt grafting of sepiolite nanoclay onto poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by reactive extrusion with multi-functional epoxy-based styrene-acrylic oligomer. European Polymer Journal, 84, 693-707. doi:10.1016/j.eurpolymj.2016.09.057Quiles-Carrillo, L., Montanes, N., Lagaron, J. M., Balart, R., & Torres-Giner, S. (2018). On the use of acrylated epoxidized soybean oil as a reactive compatibilizer in injection-molded compostable pieces consisting of polylactide filled with orange peel flour. Polymer International, 67(10), 1341-1351. doi:10.1002/pi.5588Samper, M. D., Petrucci, R., Sánchez-Nacher, L., Balart, R., & Kenny, J. M. (2014). Effect of silane coupling agents on basalt fiber-epoxidized vegetable oil matrix composite materials analyzed by the single fiber fragmentation technique. Polymer Composites, 36(7), 1205-1212. doi:10.1002/pc.23023Khan, M. A., & Hassan, M. M. (2006). Effect of γ-aminopropyl trimethoxy silane on the performance of jute–polycarbonate composites. Journal of Applied Polymer Science, 100(5), 4142-4154. doi:10.1002/app.23441Quiles-Carrillo, L., Montanes, N., Sammon, C., Balart, R., & Torres-Giner, S. (2018). Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Industrial Crops and Products, 111, 878-888. doi:10.1016/j.indcrop.2017.10.062Ferri, J. M., Garcia-Garcia, D., Sánchez-Nacher, L., Fenollar, O., & Balart, R. (2016). The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers, 147, 60-68. doi:10.1016/j.carbpol.2016.03.082Tábi, T., Égerházi, A. Z., Tamás, P., Czigány, T., & Kovács, J. G. (2014). Investigation of injection moulded poly(lactic acid) reinforced with long basalt fibres. Composites Part A: Applied Science and Manufacturing, 64, 99-106. doi:10.1016/j.compositesa.2014.05.001Re, G. L., Benali, S., Habibi, Y., Raquez, J.-M., & Dubois, P. (2014). Stereocomplexed PLA nanocomposites: From in situ polymerization to materials properties. European Polymer Journal, 54, 138-150. doi:10.1016/j.eurpolymj.2014.03.004Garcia-Campo, M., Quiles-Carrillo, L., Masia, J., Reig-Pérez, M., Montanes, N., & Balart, R. (2017). Environmentally Friendly Compatibilizers from Soybean Oil for Ternary Blends of Poly(lactic acid)-PLA, Poly(ε-caprolactone)-PCL and Poly(3-hydroxybutyrate)-PHB. Materials, 10(11), 1339. doi:10.3390/ma10111339Mauck, S. C., Wang, S., Ding, W., Rohde, B. J., Fortune, C. K., Yang, G., … Robertson, M. L. (2016). Biorenewable Tough Blends of Polylactide and Acrylated Epoxidized Soybean Oil Compatibilized by a Polylactide Star Polymer. Macromolecules, 49(5), 1605-1615. doi:10.1021/acs.macromol.5b02613Ferri, J. M., Garcia-Garcia, D., Montanes, N., Fenollar, O., & Balart, R. (2017). The effect of maleinized linseed oil as biobased plasticizer in poly(lactic acid)-based formulations. Polymer International, 66(6), 882-891. doi:10.1002/pi.5329Silverajah, V. S. G., Ibrahim, N. A., Zainuddin, N., Yunus, W. M. Z. W., & Hassan, H. A. (2012). Mechanical, Thermal and Morphological Properties of Poly(lactic acid)/Epoxidized Palm Olein Blend. Molecules, 17(10), 11729-11747. doi:10.3390/molecules171011729Chieng, B., Ibrahim, N., Then, Y., & Loo, Y. (2014). Epoxidized Vegetable Oils Plasticized Poly(lactic acid) Biocomposites: Mechanical, Thermal and Morphology Properties. Molecules, 19(10), 16024-16038. doi:10.3390/molecules191016024Liu, H., & Zhang, J. (2011). Research progress in toughening modification of poly(lactic acid). Journal of Polymer Science Part B: Polymer Physics, 49(15), 1051-1083. doi:10.1002/polb.22283Carbonell-Verdu, A., Bernardi, L., Garcia-Garcia, D., Sanchez-Nacher, L., & Balart, R. (2015). Development of environmentally friendly composite matrices from epoxidized cottonseed oil. European Polymer Journal, 63, 1-10. doi:10.1016/j.eurpolymj.2014.11.043Carbonell-Verdu, A., Samper, M. D., Garcia-Garcia, D., Sanchez-Nacher, L., & Balart, R. (2017). Plasticization effect of epoxidized cottonseed oil (ECSO) on poly(lactic acid). Industrial Crops and Products, 104, 278-286. doi:10.1016/j.indcrop.2017.04.050Quiles-Carrillo, L., Duart, S., Montanes, N., Torres-Giner, S., & Balart, R. (2018). Enhancement of the mechanical and thermal properties of injection-molded polylactide parts by the addition of acrylated epoxidized soybean oil. Materials & Design, 140, 54-63. doi:10.1016/j.matdes.2017.11.031Ali, F., Chang, Y.-W., Kang, S. C., & Yoon, J. Y. (2008). Thermal, mechanical and rheological properties of poly (lactic acid)/epoxidized soybean oil blends. Polymer Bulletin, 62(1), 91-98. doi:10.1007/s00289-008-1012-9Xu, Y.-Q., & Qu, J.-P. (2009). Mechanical and rheological properties of epoxidized soybean oil plasticized poly(lactic acid). Journal of Applied Polymer Science, 112(6), 3185-3191. doi:10.1002/app.29797Garcia-Garcia, D., Ferri, J. M., Montanes, N., Lopez-Martinez, J., & Balart, R. (2016). Plasticization effects of epoxidized vegetable oils on mechanical properties of poly(3-hydroxybutyrate). Polymer International, 65(10), 1157-1164. doi:10.1002/pi.5164Arrieta, M. P., Castro-López, M. del M., Rayón, E., Barral-Losada, L. F., López-Vilariño, J. M., López, J., & González-Rodríguez, M. V. (2014). Plasticized Poly(lactic acid)–Poly(hydroxybutyrate) (PLA–PHB) Blends Incorporated with Catechin Intended for Active Food-Packaging Applications. Journal of Agricultural and Food Chemistry, 62(41), 10170-10180. doi:10.1021/jf5029812Pilla, S., Kramschuster, A., Yang, L., Lee, J., Gong, S., & Turng, L.-S. (2009). Microcellular injection-molding of polylactide with chain-extender. Materials Science and Engineering: C, 29(4), 1258-1265. doi:10.1016/j.msec.2008.10.027Singh, S., Ghosh, A. K., Maiti, S. N., Raha, S., Gupta, R. K., & Bhattacharya, S. (2011). Morphology and rheological behavior of polylactic acid/clay nanocomposites. Polymer Engineering & Science, 52(1), 225-232. doi:10.1002/pen.22074B., A., Suin, S., & Khatua, B. B. (2014). Highly exfoliated eco-friendly thermoplastic starch (TPS)/poly (lactic acid)(PLA)/clay nanocomposites using unmodified nanoclay. Carbohydrate Polymers, 110, 430-439. doi:10.1016/j.carbpol.2014.04.024Pluta, M., Jeszka, J. K., & Boiteux, G. (2007). Polylactide/montmorillonite nanocomposites: Structure, dielectric, viscoelastic and thermal properties. European Polymer Journal, 43(7), 2819-2835. doi:10.1016/j.eurpolymj.2007.04.009Paul, M.-A., Delcourt, C., Alexandre, M., Degée, P., Monteverde, F., & Dubois, P. (2005). Polylactide/montmorillonite nanocomposites: study of the hydrolytic degradation. Polymer Degradation and Stability, 87(3), 535-542. doi:10.1016/j.polymdegradstab.2004.10.011Palsikowski, P. A., Kuchnier, C. N., Pinheiro, I. F., & Morales, A. R. (2017). Biodegradation in Soil of PLA/PBAT Blends Compatibilized with Chain Extender. Journal of Polymers and the Environment, 26(1), 330-341. doi:10.1007/s10924-017-0951-

    Ductility and Toughness Improvement of Injection-Molded Compostable Pieces of Polylactide by Melt Blending with Poly(e-caprolactone) and Thermoplastic Starch

    Full text link
    [EN] The present study describes the preparation and characterization of binary and ternary blends based on polylactide (PLA) with poly("-caprolactone) (PCL) and thermoplastic starch (TPS) to develop fully compostable plastics with improved ductility and toughness. To this end, PLA was first melt-mixed in a co rotating twin-screw extruder with up to 40 wt % of different PCL and TPS combinations and then shaped into pieces by injection molding. The mechanical, thermal, and thermomechanical properties of the resultant binary and ternary blend pieces were analyzed and related to their composition. Although the biopolymer blends were immiscible, the addition of both PCL and TPS remarkably increased the flexibility and impact strength of PLA while it slightly reduced its mechanical strength. The most balanced mechanical performance was achieved for the ternary blend pieces that combined high PCL contents with low amounts of TPS, suggesting a main phase change from PLA/TPS (comparatively rigid) to PLA/PCL (comparatively flexible). The PLA-based blends presented an ¿island-and-sea¿ morphology in which the TPS phase contributed to the fine dispersion of PCL as micro-sized spherical domains that acted as a rubber-like phase with the capacity to improve toughness. In addition, the here-prepared ternary blend pieces presented slightly higher thermal stability and lower thermomechanical stiffness than the neat PLA pieces. Finally, all biopolymer pieces fully disintegrated in a controlled compost soil after 28 days. Therefore, the inherently low ductility and toughness of PLA can be successfully improved by melt blending with PCL and TPS, resulting in compostable plastic materials with a great potential in, for instance, rigid packaging applications.This research was supported by the Ministry of Science, Innovation, and Universities (MICIU) program numbers MAT2017-84909-C2-2-R and AGL2015-63855-C2-1-R, and by the EU H2020 project YPACK (reference number 773872).Quiles-Carrillo, L.; Montanes, N.; Pineiro, F.; Jorda-Vilaplana, A.; Torres-Giner, S. (2018). Ductility and Toughness Improvement of Injection-Molded Compostable Pieces of Polylactide by Melt Blending with Poly(e-caprolactone) and Thermoplastic Starch. Materials. 11(11):1-20. https://doi.org/10.3390/ma11112138S1201111Hopewell, J., Dvorak, R., & Kosior, E. (2009). Plastics recycling: challenges and opportunities. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2115-2126. doi:10.1098/rstb.2008.0311Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., & Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. doi:10.1016/j.compositesb.2018.04.017Madhavan Nampoothiri, K., Nair, N. R., & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101(22), 8493-8501. doi:10.1016/j.biortech.2010.05.092Kumar, N., & Das, D. (2017). Fibrous biocomposites from nettle (Girardinia diversifolia) and poly(lactic acid) fibers for automotive dashboard panel application. Composites Part B: Engineering, 130, 54-63. doi:10.1016/j.compositesb.2017.07.059Garcés, J. M., Moll, D. J., Bicerano, J., Fibiger, R., & McLeod, D. G. (2000). Polymeric Nanocomposites for Automotive Applications. Advanced Materials, 12(23), 1835-1839. doi:10.1002/1521-4095(200012)12:233.0.co;2-tLasprilla, A. J. R., Martinez, G. A. R., Lunelli, B. H., Jardini, A. L., & Filho, R. M. (2012). Poly-lactic acid synthesis for application in biomedical devices — A review. Biotechnology Advances, 30(1), 321-328. doi:10.1016/j.biotechadv.2011.06.019Torres-Giner, S., Gimeno-Alcañiz, J. V., Ocio, M. J., & Lagaron, J. M. (2011). Optimization of electrospun polylactide-based ultrathin fibers for osteoconductive bone scaffolds. Journal of Applied Polymer Science, 122(2), 914-925. doi:10.1002/app.34208Muller, J., González-Martínez, C., & Chiralt, A. (2017). Combination of Poly(lactic) Acid and Starch for Biodegradable Food Packaging. Materials, 10(8), 952. doi:10.3390/ma10080952Kakroodi, A. R., Kazemi, Y., Nofar, M., & Park, C. B. (2017). Tailoring poly(lactic acid) for packaging applications via the production of fully bio-based in situ microfibrillar composite films. Chemical Engineering Journal, 308, 772-782. doi:10.1016/j.cej.2016.09.130Kao, C.-T., Lin, C.-C., Chen, Y.-W., Yeh, C.-H., Fang, H.-Y., & Shie, M.-Y. (2015). Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering. Materials Science and Engineering: C, 56, 165-173. doi:10.1016/j.msec.2015.06.028Chen, Q., Mangadlao, J. D., Wallat, J., De Leon, A., Pokorski, J. K., & Advincula, R. C. (2017). 3D Printing Biocompatible Polyurethane/Poly(lactic acid)/Graphene Oxide Nanocomposites: Anisotropic Properties. ACS Applied Materials & Interfaces, 9(4), 4015-4023. doi:10.1021/acsami.6b11793Quiles-Carrillo, L., Duart, S., Montanes, N., Torres-Giner, S., & Balart, R. (2018). Enhancement of the mechanical and thermal properties of injection-molded polylactide parts by the addition of acrylated epoxidized soybean oil. Materials & Design, 140, 54-63. doi:10.1016/j.matdes.2017.11.031Mooney, D. J., Breuer, C., McNamara, K., Vacanti, J. P., & Langer, R. (1995). Fabricating Tubular Devices from Polymers of Lactic and Glycolic Acid for Tissue Engineering. Tissue Engineering, 1(2), 107-118. doi:10.1089/ten.1995.1.107Elsawy, M. A., Kim, K.-H., Park, J.-W., & Deep, A. (2017). Hydrolytic degradation of polylactic acid (PLA) and its composites. Renewable and Sustainable Energy Reviews, 79, 1346-1352. doi:10.1016/j.rser.2017.05.143Pluta, M., & Piorkowska, E. (2015). Tough crystalline blends of polylactide with block copolymers of ethylene glycol and propylene glycol. Polymer Testing, 46, 79-87. doi:10.1016/j.polymertesting.2015.06.014Maiza, M., Benaniba, M. T., Quintard, G., & Massardier-Nageotte, V. (2015). Biobased additive plasticizing Polylactic acid (PLA). Polímeros, 25(6), 581-590. doi:10.1590/0104-1428.1986Ljungberg, N., & Wesslén, B. (2002). The effects of plasticizers on the dynamic mechanical and thermal properties of poly(lactic acid). Journal of Applied Polymer Science, 86(5), 1227-1234. doi:10.1002/app.11077Darie-Niţă, R. N., Vasile, C., Irimia, A., Lipşa, R., & Râpă, M. (2015). Evaluation of some eco-friendly plasticizers for PLA films processing. Journal of Applied Polymer Science, 133(13), n/a-n/a. doi:10.1002/app.43223Quiles-Carrillo, L., Blanes-Martínez, M. M., Montanes, N., Fenollar, O., Torres-Giner, S., & Balart, R. (2018). Reactive toughening of injection-molded polylactide pieces using maleinized hemp seed oil. European Polymer Journal, 98, 402-410. doi:10.1016/j.eurpolymj.2017.11.039Ferri, J. M., Garcia-Garcia, D., Montanes, N., Fenollar, O., & Balart, R. (2017). The effect of maleinized linseed oil as biobased plasticizer in poly(lactic acid)-based formulations. Polymer International, 66(6), 882-891. doi:10.1002/pi.5329Carbonell-Verdu, A., Garcia-Garcia, D., Dominici, F., Torre, L., Sanchez-Nacher, L., & Balart, R. (2017). PLA films with improved flexibility properties by using maleinized cottonseed oil. European Polymer Journal, 91, 248-259. doi:10.1016/j.eurpolymj.2017.04.013Quiles-Carrillo, L., Montanes, N., Sammon, C., Balart, R., & Torres-Giner, S. (2018). Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Industrial Crops and Products, 111, 878-888. doi:10.1016/j.indcrop.2017.10.062Gerard, T., & Budtova, T. (2012). Morphology and molten-state rheology of polylactide and polyhydroxyalkanoate blends. European Polymer Journal, 48(6), 1110-1117. doi:10.1016/j.eurpolymj.2012.03.015Yu, L., Dean, K., & Li, L. (2006). Polymer blends and composites from renewable resources. Progress in Polymer Science, 31(6), 576-602. doi:10.1016/j.progpolymsci.2006.03.002Gug, J.-I., Tan, B., Soule, J., Downie, M., Barrington, J., & Sobkowicz, M. J. (2017). Analysis of Models Predicting Morphology Transitions in Reactive Twin-Screw Extrusion of Bio-Based Polyester/Polyamide Blends. International Polymer Processing, 32(3), 363-377. doi:10.3139/217.3351Stoclet, G., Seguela, R., & Lefebvre, J.-M. (2011). Morphology, thermal behavior and mechanical properties of binary blends of compatible biosourced polymers: Polylactide/polyamide11. Polymer, 52(6), 1417-1425. doi:10.1016/j.polymer.2011.02.002Al-Itry, R., Lamnawar, K., & Maazouz, A. (2012). Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polymer Degradation and Stability, 97(10), 1898-1914. doi:10.1016/j.polymdegradstab.2012.06.028Wu, N., & Zhang, H. (2017). Mechanical properties and phase morphology of super-tough PLA/PBAT/EMA-GMA multicomponent blends. Materials Letters, 192, 17-20. doi:10.1016/j.matlet.2017.01.063Sarazin, P., Li, G., Orts, W. J., & Favis, B. D. (2008). Binary and ternary blends of polylactide, polycaprolactone and thermoplastic starch. Polymer, 49(2), 599-609. doi:10.1016/j.polymer.2007.11.029Valerio, O., Misra, M., & Mohanty, A. K. (2018). Statistical design of sustainable thermoplastic blends of poly(glycerol succinate-co-maleate) (PGSMA), poly(lactic acid) (PLA) and poly(butylene succinate) (PBS). Polymer Testing, 65, 420-428. doi:10.1016/j.polymertesting.2017.12.018Ostafinska, A., Fortelný, I., Hodan, J., Krejčíková, S., Nevoralová, M., Kredatusová, J., … Šlouf, M. (2017). Strong synergistic effects in PLA/PCL blends: Impact of PLA matrix viscosity. Journal of the Mechanical Behavior of Biomedical Materials, 69, 229-241. doi:10.1016/j.jmbbm.2017.01.015Wu, D., Lin, D., Zhang, J., Zhou, W., Zhang, M., Zhang, Y., … Lin, B. (2011). Selective Localization of Nanofillers: Effect on Morphology and Crystallization of PLA/PCL Blends. Macromolecular Chemistry and Physics, 212(6), 613-626. doi:10.1002/macp.201000579Liu, H., Song, W., Chen, F., Guo, L., & Zhang, J. (2011). Interaction of Microstructure and Interfacial Adhesion on Impact Performance of Polylactide (PLA) Ternary Blends. Macromolecules, 44(6), 1513-1522. doi:10.1021/ma1026934Wokadala, O. C., Ray, S. S., Bandyopadhyay, J., Wesley-Smith, J., & Emmambux, N. M. (2015). Morphology, thermal properties and crystallization kinetics of ternary blends of the polylactide and starch biopolymers and nanoclay: The role of nanoclay hydrophobicity. Polymer, 71, 82-92. doi:10.1016/j.polymer.2015.06.058Zolali, A. M., & Favis, B. D. (2017). Partial to complete wetting transitions in immiscible ternary blends with PLA: the influence of interfacial confinement. Soft Matter, 13(15), 2844-2856. doi:10.1039/c6sm02386jMatzinos, P., Tserki, V., Kontoyiannis, A., & Panayiotou, C. (2002). Processing and characterization of starch/polycaprolactone products. Polymer Degradation and Stability, 77(1), 17-24. doi:10.1016/s0141-3910(02)00072-1Maglio, G., Malinconico, M., Migliozzi, A., & Groeninckx, G. (2004). Immiscible Poly(L-lactide)/Poly(ɛ-caprolactone) Blends: Influence of the Addition of a Poly(L-lactide)-Poly(oxyethylene) Block Copolymer on Thermal Behavior and Morphology. Macromolecular Chemistry and Physics, 205(7), 946-950. doi:10.1002/macp.200300150Forssell, P., Mikkilä, J., Suortti, T., Seppälä, J., & Poutanen, K. (1996). Plasticization of Barley Starch with Glycerol and Water. Journal of Macromolecular Science, Part A, 33(5), 703-715. doi:10.1080/10601329608010888Raquez, J.-M., Nabar, Y., Srinivasan, M., Shin, B.-Y., Narayan, R., & Dubois, P. (2008). Maleated thermoplastic starch by reactive extrusion. Carbohydrate Polymers, 74(2), 159-169. doi:10.1016/j.carbpol.2008.01.027Averous, L. (2000). Properties of thermoplastic blends: starch–polycaprolactone. Polymer, 41(11), 4157-4167. doi:10.1016/s0032-3861(99)00636-9Odelius, K., Ohlson, M., Höglund, A., & Albertsson, A. (2012). Polyesters with small structural variations improve the mechanical properties of polylactide. Journal of Applied Polymer Science, 127(1), 27-33. doi:10.1002/app.36842Zhen, Z., Ying, S., Hongye, F., Jie, R., & Tianbin, R. (2011). Preparation, Characterization and Properties of Binary and Ternary Blends with Thermoplastic Starch, Poly(Lactic Acid) and Poly(Butylene Succinate). Polymers from Renewable Resources, 2(2), 49-62. doi:10.1177/204124791100200201Ren, J., Fu, H., Ren, T., & Yuan, W. (2009). Preparation, characterization and properties of binary and ternary blends with thermoplastic starch, poly(lactic acid) and poly(butylene adipate-co-terephthalate). Carbohydrate Polymers, 77(3), 576-582. doi:10.1016/j.carbpol.2009.01.024Ferri, J. M., Garcia-Garcia, D., Sánchez-Nacher, L., Fenollar, O., & Balart, R. (2016). The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers, 147, 60-68. doi:10.1016/j.carbpol.2016.03.082García-Campo, M., Boronat, T., Quiles-Carrillo, L., Balart, R., & Montanes, N. (2017). Manufacturing and Characterization of Toughened Poly(lactic acid) (PLA) Formulations by Ternary Blends with Biopolyesters. Polymers, 10(1), 3. doi:10.3390/polym10010003Chen, C.-C., Chueh, J.-Y., Tseng, H., Huang, H.-M., & Lee, S.-Y. (2003). Preparation and characterization of biodegradable PLA polymeric blends. Biomaterials, 24(7), 1167-1173. doi:10.1016/s0142-9612(02)00466-0Ferri, J. M., Fenollar, O., Jorda-Vilaplana, A., García-Sanoguera, D., & Balart, R. (2016). Effect of miscibility on mechanical and thermal properties of poly(lactic acid)/ polycaprolactone blends. Polymer International, 65(4), 453-463. doi:10.1002/pi.5079Tang, L., Wang, L., Chen, P., Fu, J., Xiao, P., Ye, N., & Zhang, M. (2017). Toughness of ABS/PBT blends: The relationship between composition, morphology, and fracture behavior. Journal of Applied Polymer Science, 135(13), 46051. doi:10.1002/app.46051Muthuraj, R., Misra, M., & Mohanty, A. K. (2017). Biodegradable compatibilized polymer blends for packaging applications: A literature review. Journal of Applied Polymer Science, 135(24), 45726. doi:10.1002/app.45726Carmona, V. B., Corrêa, A. C., Marconcini, J. M., & Mattoso, L. H. C. (2014). Properties of a Biodegradable Ternary Blend of Thermoplastic Starch (TPS), Poly(ε-Caprolactone) (PCL) and Poly(Lactic Acid) (PLA). Journal of Polymers and the Environment, 23(1), 83-89. doi:10.1007/s10924-014-0666-7Kim, H.-Y., Park, S. S., & Lim, S.-T. (2015). Preparation, characterization and utilization of starch nanoparticles. Colloids and Surfaces B: Biointerfaces, 126, 607-620. doi:10.1016/j.colsurfb.2014.11.011Bordes, C., Fréville, V., Ruffin, E., Marote, P., Gauvrit, J. Y., Briançon, S., & Lantéri, P. (2010). Determination of poly(ɛ-caprolactone) solubility parameters: Application to solvent substitution in a microencapsulation process. International Journal of Pharmaceutics, 383(1-2), 236-243. doi:10.1016/j.ijpharm.2009.09.023Small, P. A. (2007). Some factors affecting the solubility of polymers. Journal of Applied Chemistry, 3(2), 71-80. doi:10.1002/jctb.5010030205Navarro-Baena, I., Sessini, V., Dominici, F., Torre, L., Kenny, J. M., & Peponi, L. (2016). Design of biodegradable blends based on PLA and PCL: From morphological, thermal and mechanical studies to shape memory behavior. Polymer Degradation and Stability, 132, 97-108. doi:10.1016/j.polymdegradstab.2016.03.037Averous, L., & Boquillon, N. (2004). Biocomposites based on plasticized starch: thermal and mechanical behaviours. Carbohydrate Polymers, 56(2), 111-122. doi:10.1016/j.carbpol.2003.11.015Zhang, Y., Rempel, C., & Liu, Q. (2014). Thermoplastic Starch Processing and Characteristics—A Review. Critical Reviews in Food Science and Nutrition, 54(10), 1353-1370. doi:10.1080/10408398.2011.636156Patrício, T., & Bártolo, P. (2013). Thermal Stability of PCL/PLA Blends Produced by Physical Blending Process. Procedia Engineering, 59, 292-297. doi:10.1016/j.proeng.2013.05.124Mofokeng, J. P., & Luyt, A. S. (2015). Morphology and thermal degradation studies of melt-mixed poly(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) biodegradable polymer blend nanocomposites with TiO2 as filler. Polymer Testing, 45, 93-100. doi:10.1016/j.polymertesting.2015.05.007Quiles-Carrillo, L., Montanes, N., Lagaron, J. M., Balart, R., & Torres-Giner, S. (2018). In Situ Compatibilization of Biopolymer Ternary Blends by Reactive Extrusion with Low-Functionality Epoxy-Based Styrene–Acrylic Oligomer. Journal of Polymers and the Environment, 27(1), 84-96. doi:10.1007/s10924-018-1324-2Garcia-Campo, M., Quiles-Carrillo, L., Masia, J., Reig-Pérez, M., Montanes, N., & Balart, R. (2017). Environmentally Friendly Compatibilizers from Soybean Oil for Ternary Blends of Poly(lactic acid)-PLA, Poly(ε-caprolactone)-PCL and Poly(3-hydroxybutyrate)-PHB. Materials, 10(11), 1339. doi:10.3390/ma10111339Torres-Giner, S., Montanes, N., Fenollar, O., García-Sanoguera, D., & Balart, R. (2016). Development and optimization of renewable vinyl plastisol/wood flour composites exposed to ultraviolet radiation. Materials & Design, 108, 648-658. doi:10.1016/j.matdes.2016.07.037Martin, O., & Avérous, L. (2001). Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer, 42(14), 6209-6219. doi:10.1016/s0032-3861(01)00086-6Mittal, V., Akhtar, T., & Matsko, N. (2015). Mechanical, Thermal, Rheological and Morphological Properties of Binary and Ternary Blends of PLA, TPS and PCL. Macromolecular Materials and Engineering, 300(4), 423-435. doi:10.1002/mame.201400332Di Franco, C. R., Cyras, V. P., Busalmen, J. P., Ruseckaite, R. A., & Vázquez, A. (2004). Degradation of polycaprolactone/starch blends and composites with sisal fibre. Polymer Degradation and Stability, 86(1), 95-103. doi:10.1016/j.polymdegradstab.2004.02.009Iovino, R., Zullo, R., Rao, M. A., Cassar, L., & Gianfreda, L. (2008). Biodegradation of poly(lactic acid)/starch/coir biocomposites under controlled composting conditions. Polymer Degradation and Stability, 93(1), 147-157. doi:10.1016/j.polymdegradstab.2007.10.011Thakore, I. ., Desai, S., Sarawade, B. ., & Devi, S. (2001). Studies on biodegradability, morphology and thermo-mechanical properties of LDPE/modified starch blends. European Polymer Journal, 37(1), 151-160. doi:10.1016/s0014-3057(00)00086-0Sikorska, W., Musiol, M., Nowak, B., Pajak, J., Labuzek, S., Kowalczuk, M., & Adamus, G. (2015). Degradability of polylactide and its blend with poly[(R,S)-3-hydroxybutyrate] in industrial composting and compost extract. International Biodeterioration & Biodegradation, 101, 32-41. doi:10.1016/j.ibiod.2015.03.02

    Enhancing the mechanical features of clay surfaces by the absorption of nano-SiO2 particles in aqueous media. Case of study on Bronze Age clay objects

    Full text link
    [EN] Nanoparticles are known to be able to enhance the performance of low dense materials, achieving the small intergranular spaces to further interact with the matrix. In this work, a consolidation treatment of an ancient clay material is reported. It is based on the use of silica nanoparticles dispersed in an aqueous medium as a more sustainable approach than those currently used in the conservation field. The effective consolidation has been determined by ensuring an appropriate mechanical surface resistance using the nanoindentation technique as non-destructive measurements. Moreover, the ability of SiO(2 )nanoparticles to fill the microstructure is studied by scanning electron microscopy. As a case report, several low-strength clay fragments dated from the Bronze Age were surface treated with a commercial aqueous suspension of SiO2 nanoparticles that were analyzed by transmission electron microscopy (TEM) displaying dimensions of about 20 nm in diameter. Field Emission Electron Microscopy (FESEM) revealed that nanoparticles filled the inter-granular spaces of the clay, leading to a nanostructured material. The nanoindentation results showed an increase in surface resistance against scratching. Meanwhile, the nanohardness and elastic modulus increased 10 times (from 15 to 150 MPa) and 8 times (from 1 to 8 GPa), respectively due to the nano-SiO2 treatment, confirming the consolidation effect of the nanoparticles.Authors acknowledge the financial support of Spanish Ministry of Economy and Competitiveness, MAT2014-59242-C2-1-R. Authors also acknowledge the support of Helena Bonet, Director of the Prehistory Museum of Valencia and Ma Jesus de Pedro, conservator of this Museum, and to the Photographic Archive Department. M.P. Arrieta wishes to thank the financial support of MINECO for a Juan de la Cierva (FJCI-2014-20630) contract.Rayón, E.; Arrieta, MP.; Pasies -Oviedo, T.; López-Martínez, J.; Jorda Moret, JL. (2018). Enhancing the mechanical features of clay surfaces by the absorption of nano-SiO2 particles in aqueous media. Case of study on Bronze Age clay objects. Cement and Concrete Composites. 93:107-117. https://doi.org/10.1016/j.cemconcomp.2018.07.005S1071179

    Zeolite Rho: a highly selective adsorbent for CO2/CH4 separation induced by a structural phase modification

    Full text link
    [EN] Zeolite Rho is able to successfully separate CO2 from CH4 with the highest selectivity ever observed on the basis of pore diameter and surface polarity. The adsorption of CO2 provokes structural changes in the zeolite Rho.We acknowledge financial support from Spanish CICYT (MAT2009-14528-C02-01, CTQ2010-17988/PPQ) and European Project TopCombi (NMP2-CT2005-515792). M.P. thanks CSIC for a JAE doctoral fellowship. The authors thank the referee for the suggestion to carry out structural studies.Palomino Roca, M.; Corma Canós, A.; Jorda Moret, JL.; Rey Garcia, F.; Valencia Valencia, S. (2012). Zeolite Rho: a highly selective adsorbent for CO2/CH4 separation induced by a structural phase modification. Chemical Communications. 48(2):215-217. doi:10.1039/C1CC16320ES215217482Ruthven, D. M., & Reyes, S. C. (2007). Adsorptive separation of light olefins from paraffins. Microporous and Mesoporous Materials, 104(1-3), 59-66. doi:10.1016/j.micromeso.2007.01.005Jiang, J., Yu, J., & Corma, A. (2010). Extra-Large-Pore Zeolites: Bridging the Gap between Micro and Mesoporous Structures. Angewandte Chemie International Edition, 49(18), 3120-3145. doi:10.1002/anie.200904016R. T. Yang , Adsorbents: Fundamentals and Applications, John Wiley and Sons, Hoboken, New Jersey, 2003, p. 157S. Sircar and A. L.Myers, Gas separation by zeolites, in Handbook of Zeolite Science and Technology, ed. S. M. Auerbach, K. A. Carrado and P. K. Dutta, 2003, p. 1063R. M. Barrer , Zeolites and Clay Minerals as Sorbents and Molecular Sieves, Academic Press, London, 1978Corma, A., Rey, F., Rius, J., Sabater, M. J., & Valencia, S. (2004). Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites. Nature, 431(7006), 287-290. doi:10.1038/nature02909Olson, D. H., Camblor, M. A., Villaescusa, L. A., & Kuehl, G. H. (2004). Light hydrocarbon sorption properties of pure silica Si-CHA and ITQ-3 and high silica ZSM-58. Microporous and Mesoporous Materials, 67(1), 27-33. doi:10.1016/j.micromeso.2003.09.025Zhu, W., Kapteijn, F., & Moulijn, J. A. (1999). Shape selectivity in the adsorption of propane/propene on the all-silica DD3R. Chemical Communications, (24), 2453-2454. doi:10.1039/a906465fPalomino, M., Cantín, A., Corma, A., Leiva, S., Rey, F., & Valencia, S. (2007). Pure silica ITQ-32 zeolite allows separation of linear olefins from paraffins. Chem. Commun., (12), 1233-1235. doi:10.1039/b700358gTijsebaert, B., Varszegi, C., Gies, H., Xiao, F.-S., Bao, X., Tatsumi, T., … De Vos, D. (2008). Liquid phase separation of 1-butene from 2-butenes on all-silica zeolite RUB-41. Chemical Communications, (21), 2480. doi:10.1039/b719463cOlson, D. H., Yang, X., & Camblor, M. A. (2004). ITQ-12:  A Zeolite Having Temperature Dependent Adsorption Selectivity and Potential for Propene Separation. The Journal of Physical Chemistry B, 108(30), 11044-11048. doi:10.1021/jp040216dDenayer, J. F., Souverijns, W., Jacobs, P. A., Martens, J. A., & Baron, G. V. (1998). High-Temperature Low-Pressure Adsorption of Branched C5−C8Alkanes on Zeolite Beta, ZSM-5, ZSM-22, Zeolite Y, and Mordenite. The Journal of Physical Chemistry B, 102(23), 4588-4597. doi:10.1021/jp980674kAmrouche, H., Aguado, S., Pérez-Pellitero, J., Chizallet, C., Siperstein, F., Farrusseng, D., … Nieto-Draghi, C. (2011). Experimental and Computational Study of Functionality Impact on Sodalite–Zeolitic Imidazolate Frameworks for CO2Separation. The Journal of Physical Chemistry C, 115(33), 16425-16432. doi:10.1021/jp202804gWang, B., Côté, A. P., Furukawa, H., O’Keeffe, M., & Yaghi, O. M. (2008). Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature, 453(7192), 207-211. doi:10.1038/nature06900Serra-Crespo, P., Ramos-Fernandez, E. V., Gascon, J., & Kapteijn, F. (2011). Synthesis and Characterization of an Amino Functionalized MIL-101(Al): Separation and Catalytic Properties. Chemistry of Materials, 23(10), 2565-2572. doi:10.1021/cm103644bTagliabue, M., Farrusseng, D., Valencia, S., Aguado, S., Ravon, U., Rizzo, C., … Mirodatos, C. (2009). Natural gas treating by selective adsorption: Material science and chemical engineering interplay. Chemical Engineering Journal, 155(3), 553-566. doi:10.1016/j.cej.2009.09.010P. A. Barrett and N. A.Stephenson, in Zeolites and Ordered Porous Solids: Fundamentals and Applications, ed. C. Martínez and J. Pérez-Pariente, Editorial Universitat Politècnica de València, Valencia, 2011, p. 149Bonenfant, D., Kharoune, M., Niquette, P., Mimeault, M., & Hausler, R. (2008). Advances in principal factors influencing carbon dioxide adsorption on zeolites. Science and Technology of Advanced Materials, 9(1), 013007. doi:10.1088/1468-6996/9/1/013007Dunne, J. A., Rao, M., Sircar, S., Gorte, R. J., & Myers, A. L. (1996). Calorimetric Heats of Adsorption and Adsorption Isotherms. 2. O2, N2, Ar, CO2, CH4, C2H6, and SF6on NaX, H-ZSM-5, and Na-ZSM-5 Zeolites. Langmuir, 12(24), 5896-5904. doi:10.1021/la960496rDelgado, J. A., Uguina, M. A., Gómez, J. M., & Ortega, L. (2006). Adsorption equilibrium of carbon dioxide, methane and nitrogen onto Na- and H-mordenite at high pressures. Separation and Purification Technology, 48(3), 223-228. doi:10.1016/j.seppur.2005.07.027Vansant, E. F., & Voets, R. (1981). Adsorption of binary gas mixtures in ion-exchanged forms of mordenite. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 77(6), 1371. doi:10.1039/f19817701371Llewellyn, P. L., & Maurin, G. (2007). Gas Adsorption in Zeolites and Related Materials. Introduction to Zeolite Science and Practice, 555-XVI. doi:10.1016/s0167-2991(07)80805-6Venna, S. R., & Carreon, M. A. (2008). Synthesis of SAPO-34 Crystals in the Presence of Crystal Growth Inhibitors. The Journal of Physical Chemistry B, 112(51), 16261-16265. doi:10.1021/jp809316sPalomino, M., Corma, A., Rey, F., & Valencia, S. (2010). New Insights on CO2−Methane Separation Using LTA Zeolites with Different Si/Al Ratios and a First Comparison with MOFs. Langmuir, 26(3), 1910-1917. doi:10.1021/la9026656Moon, J.-H., Bae, Y.-S., Hyun, S.-H., & Lee, C.-H. (2006). Equilibrium and kinetic characteristics of five single gases in a methyltriethoxysilane-templating silica/α-alumina composite membrane. Journal of Membrane Science, 285(1-2), 343-352. doi:10.1016/j.memsci.2006.09.003ROBSON, H. E., SHOEMAKER, D. P., OGILVIE, R. A., & MANOR, P. C. (1973). Synthesis and Crystal Structure of Zeolite Rho—A New Zeolite Related to Linde Type A. Molecular Sieves, 106-115. doi:10.1021/ba-1973-0121.ch009Chatelain, T., Patarin, J., Fousson, E., Soulard, M., Guth, J. L., & Schulz, P. (1995). Synthesis and characterization of high-silica zeolite RHO prepared in the presence of 18-crown-6 ether as organic template. Microporous Materials, 4(2-3), 231-238. doi:10.1016/0927-6513(95)00009-xHimeno, S., Tomita, T., Suzuki, K., & Yoshida, S. (2007). Characterization and selectivity for methane and carbon dioxide adsorption on the all-silica DD3R zeolite. Microporous and Mesoporous Materials, 98(1-3), 62-69. doi:10.1016/j.micromeso.2006.05.018Cavenati, S., Grande, C. A., & Rodrigues, A. E. (2004). Adsorption Equilibrium of Methane, Carbon Dioxide, and Nitrogen on Zeolite 13X at High Pressures. Journal of Chemical & Engineering Data, 49(4), 1095-1101. doi:10.1021/je0498917LI, S. (2004). SAPO-34 membranes for CO2/CH4 separation. Journal of Membrane Science, 241(1), 121-135. doi:10.1016/j.memsci.2004.04.027Van den Bergh, J., Zhu, W., Gascon, J., Moulijn, J. A., & Kapteijn, F. (2008). Separation and permeation characteristics of a DD3R zeolite membrane. Journal of Membrane Science, 316(1-2), 35-45. doi:10.1016/j.memsci.2007.12.051L. B. McCusker and C.Baerlocher, in Proceed. 6th Inter. Zeolite Conf., ed. D. Olson and A. Bisio, Butterworths, 1984, p. 812Corbin, D. R., Abrams, L., Jones, G. A., Eddy, M. M., Harrison, W. T. A., Stucky, G. D., & Cox, D. E. (1990). Flexibility of the zeolite RHO framework: in situ x-ray and neutron powder structural characterization of divalent cation-exchanged zeolite RHO. Journal of the American Chemical Society, 112(12), 4821-4830. doi:10.1021/ja00168a02

    Rational Design and HT Techniques Allow the Synthesis of New IWR Zeolite Polymorphs

    Full text link
    The authors thank the Spanish CICYT for financial support (MAT2003-07945-C02-01). J.L.J. thanks the Spanish MEC for the Juan de la Cierva contract.Cantin Sanz, A.; Corma Canós, A.; Díaz Cabañas, MJ.; Jorda Moret, JL.; Moliner Marin, M. (2006). Rational Design and HT Techniques Allow the Synthesis of New IWR Zeolite Polymorphs. Journal of the American Chemical Society. 128(13):4216-4217. https://doi.org/10.1021/ja0603599S421642171281

    Upgrading argan shell wastes in wood plastic composites with biobased polyethylene matrix and different compatibilizers

    Get PDF
    The present study reports on the development of wood plastic composites (WPC) based on micronized argan shell (MAS) as a filler and high-density polyethylene obtained from sugarcane (Bio-HDPE), following the principles proposed by the circular economy in which the aim is to achieve zero waste by the introduction of residues of argan as a filler. The blends were prepared by extrusion and injection molding processes. In order to improve compatibility between the argan particles and the green polyolefin, different compatibilizers and additional filler were used, namely polyethylene grafted maleic anhydride (PE-g-MA 3 wt.-%), maleinized linseed oil (MLO 7.5 phr), halloysite nanotubes (HNTs 7.5 phr), and a combination of MLO and HNTs (3.75 phr each). The mechanical, morphological, thermal, thermomechanical, colorimetric, and wettability properties of each blend were analyzed. The results show that MAS acts as a reinforcing filler, increasing the stiffness of the Bio-HDPE, and that HNTs further increases this reinforcing effect. MLO and PE-g-MA, altogether with HNTs, improve the compatibility between MAS and Bio-HDPE, particularly due to bonds formed between oxygen-based groups present in each compound. Thermal stability was also improved provided by the addition of MAS and HNTs. All in all, reddish-like brown wood plastic composites with improved stiffness, good thermal stability, enhanced compatibility, and good wettability properties were obtained.Fil: Jorda Reolid, Maria. Asociación de Investigación de la Industria del Juguete; ArgentinaFil: Gomez Caturla, Jaume. Universidad Politécnica de Valencia; EspañaFil: Ivorra Martinez, Juan. Universidad Politécnica de Valencia; EspañaFil: Stefani, Pablo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Rojas Lema, Sandra. Asociación de Investigación de la Industria del Juguete; ArgentinaFil: Quiles Carrillo, Luis. Asociación de Investigación de la Industria del Juguete; Argentin

    ITQ-69: A Germanium-Containing Zeolite and its Synthesis, Structure Determination, and Adsorption Properties

    Full text link
    "This is the peer reviewed version of the following article:ITQ-69: A Germanium-Containing Zeolite and its Synthesis, Structure Determination, and Adsorption Properties, which has been published in final form at https://doi.org/10.1002/anie.202100822. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."[EN] In this work, a new zeolite named as ITQ-69, has been synthesized, characterized and its application as selective adsorbent for industrially relevant light olefins/paraffins separations has been assessed. This material has been obtained as pure germania as well as silica-germania zeolites with different Si/Ge ratios using a diquaternary ammonium cation as organic structure directing agent. Its structure was determined by single-crystal X-Ray diffraction showing a triclinic unit cell forming a tridirectional small pore channel system (8x8x8R). Also, it has been found that Si preferentially occupies some special T sites of the structure as deduced from Rietveld analysis of the powder X-ray diffraction patterns. In addition, the new zeolite ITQ-69 has been found to be stable upon calcination and thus, its adsorption properties were evaluated, showing a promising kinetic selectivity for light olefin separations in the C3 fraction.The authors acknowledge the Spanish Ministry of Science, Innovation and Universities (MCIU) for their funding via project RTI2018-101784-B-I00 and Program Severo Ochoa SEV-2016-0683. AS and EPB thanks for their grants BES-2016-078684 and FPU15/01602, respectively. The Microscopy Service of the UPV is acknowledged for their help in sample characterization. By last, authors would like to thank the use of RIAIDT-USC analytical facilities, especially to Dr. Antonio L. Llamas for extremely useful comments on SCXRD analyses.Sala-Gascon, A.; Pérez-Botella, E.; Jorda Moret, JL.; Cantin Sanz, A.; Rey Garcia, F.; Valencia Valencia, S. (2021). ITQ-69: A Germanium-Containing Zeolite and its Synthesis, Structure Determination, and Adsorption Properties. Angewandte Chemie International Edition. 60(21):11745-11750. https://doi.org/10.1002/anie.2021008221174511750602

    Synthesis design and structure of a multipore zeolite with interconnected 12- and 10-MR channels

    Full text link
    [EN] A new molecular sieve, ITQ-38, containing interconnected large and medium pores in its structure has been synthesized. The rational combination of dicationic piperidine-derivative molecules as organic structure directing agents (OSDAs) with germanium and boron atoms in alkaline media has allowed the synthesis of ITQ-38 zeolite. High-resolution transmission electron microscopy (HRTEM) has been used to elucidate the framework topology of ITQ-38, revealing the presence of domains of perfect ITQ-38 crystals as well as very small areas containing nanosized ITQ-38/ITQ-22 intergrowths. The structure of ITQ-38 is highly related to ITQ-22 and the recently described polymorph C of ITQ-39 zeolite. It shares a common building layer with ITQ-22 and contains the same building unit as the polymorph C of ITQ-39. All three structures present similar framework density, 16.1 T atoms/1000 angstrom(3).Financial support by the Spanish MICINN (MAT2009-14528-C02-01 and MAT2006-14274-C02-01), Consolider Ingenio 2010-Multicat, Generalitat Valenciana by the PROMETEO program, UPV through PAJD-06-11 (n.1952), the Swedish Research Council (VR), the Swedish Governmental Agency for Innovation Systems (VINNOVA) and Goran Gustafsson Foundtion for Natural Sciences and Medical Research, is acknowledged. Manuel Moliner also acknowledges the "Subprograma Ramon y Cajal" for the contract RYC-2011-08972. Wei Wan was supported by a postdoctoral grant from the Carl-Trygger Foundation. The EM facility was supported by Knut and Alice Wallenberg Foundation. The authors thank the beamline BM01B at ESRF in Grenoble for beamtime allocation (exp. CH-2493). Gunnel Karlsson is kindly thanked for TEM sample preparation by ultramicrotomy. Dedicated to Prof. Miguel A. Miranda on his 60th Birthday.Moliner Marin, M.; Willhammar, T.; Wan, W.; González, J.; Rey Garcia, F.; Jorda Moret, JL.; Zou, X.... (2012). Synthesis design and structure of a multipore zeolite with interconnected 12- and 10-MR channels. Journal of the American Chemical Society. 134(14):6473-6478. https://doi.org/10.1021/ja301082nS647364781341

    The first zeolite with a tri-directional extra-large 14-ring pore system derived using a phosphonium-based organic molecule

    Full text link
    [EN] A new germanosilicate zeolite (denoted as ITQ-53) with extra-large pores has been synthesised using tri-tertbutylmethylphosphonium cation as the organic structure directing agent (OSDA). Rotation electron diffraction (RED) was used to identify ITQ-53 from an initially-synthesised sample containing impurities, and to solve its structure. The structure was refined against PXRD data of pure ITQ-53 samples obtained after synthesis optimisation. ITQ-53 is the first example of extra-large pore zeolites with tri-directional interconnected 14 x 14 x 14-ring channels. It is stable up to at least 650 degrees C. The structure of ITQ-53 changes from monoclinic to orthorhombic upon calcination.This work was supported by the Spanish Government (MAT2012-38567-C02-01, Consolider Ingenio 2010-Multicat CSD-2009-00050 and Severo Ochoa SEV-2012-0267), the Swedish Research Council (VR), the Swedish Governmental Agency for Innovation Systems (VINNOVA) and the Knut & Alice Wallenberg Foundation through a grant for purchasing the TEMs and the project grant 3DEM-NATUR. Yifeng Yun thanks the China Scholarship Council (CSC).Yun, Y.; Hernández Rodríguez, M.; Wan, W.; Zou, X.; Jorda Moret, JL.; Cantin Sanz, A.; Rey Garcia, F.... (2015). The first zeolite with a tri-directional extra-large 14-ring pore system derived using a phosphonium-based organic molecule. Chemical Communications. 51(36):7602-7605. https://doi.org/10.1039/c4cc10317cS760276055136C. Baerlocher and L.McCusker, Database of Zeolite Structures: http://www.iza-structure.org/databases/Estermann, M., McCusker, L. B., Baerlocher, C., Merrouche, A., & Kessler, H. (1991). A synthetic gallophosphate molecular sieve with a 20-tetrahedral-atom pore opening. Nature, 352(6333), 320-323. doi:10.1038/352320a0Su, J., Wang, Y., Lin, J., Liang, J., Sun, J., & Zou, X. (2013). A silicogermanate with 20-ring channels directed by a simple quaternary ammonium cation. Dalton Trans., 42(5), 1360-1363. doi:10.1039/c2dt32231eWei, Y., Tian, Z., Gies, H., Xu, R., Ma, H., Pei, R., … Lin, L. (2010). Ionothermal Synthesis of an Aluminophosphate Molecular Sieve with 20-Ring Pore Openings. Angewandte Chemie International Edition, 49(31), 5367-5370. doi:10.1002/anie.201000320Sun, J., Bonneau, C., Cantín, Á., Corma, A., Díaz-Cabañas, M. J., Moliner, M., … Zou, X. (2009). The ITQ-37 mesoporous chiral zeolite. Nature, 458(7242), 1154-1157. doi:10.1038/nature07957Corma, A., Diaz-Cabanas, M. J., Jiang, J., Afeworki, M., Dorset, D. L., Soled, S. L., & Strohmaier, K. G. (2010). Extra-large pore zeolite (ITQ-40) with the lowest framework density containing double four- and double three-rings. Proceedings of the National Academy of Sciences, 107(32), 13997-14002. doi:10.1073/pnas.1003009107Dorset, D. L., Strohmaier, K. G., Kliewer, C. E., Corma, A., Díaz-Cabañas, M. J., Rey, F., & Gilmore, C. J. (2008). Crystal Structure of ITQ-26, a 3D Framework with Extra-Large Pores. Chemistry of Materials, 20(16), 5325-5331. doi:10.1021/cm801126tDorset, D. L., Kennedy, G. J., Strohmaier, K. G., Diaz-Cabañas, M. J., Rey, F., & Corma, A. (2006). P-Derived Organic Cations as Structure-Directing Agents:  Synthesis of a High-Silica Zeolite (ITQ-27) with a Two-Dimensional 12-Ring Channel System. Journal of the American Chemical Society, 128(27), 8862-8867. doi:10.1021/ja061206oCorma, A., Diaz-Cabanas, M. J., Jorda, J. L., Rey, F., Sastre, G., & Strohmaier, K. G. (2008). A Zeolitic Structure (ITQ-34) with Connected 9- and 10-Ring Channels Obtained with Phosphonium Cations as Structure Directing Agents. Journal of the American Chemical Society, 130(49), 16482-16483. doi:10.1021/ja806903cHernández-Rodríguez, M., Jordá, J. L., Rey, F., & Corma, A. (2012). Synthesis and Structure Determination of a New Microporous Zeolite with Large Cavities Connected by Small Pores. Journal of the American Chemical Society, 134(32), 13232-13235. doi:10.1021/ja306013kSimancas, R., Jordá, J. L., Rey, F., Corma, A., Cantín, A., Peral, I., & Popescu, C. (2014). A New Microporous Zeolitic Silicoborate (ITQ-52) with Interconnected Small and Medium Pores. Journal of the American Chemical Society, 136(9), 3342-3345. doi:10.1021/ja411915cSimancas, R., Dari, D., Velamazan, N., Navarro, M. T., Cantin, A., Jorda, J. L., … Rey, F. (2010). Modular Organic Structure-Directing Agents for the Synthesis of Zeolites. Science, 330(6008), 1219-1222. doi:10.1126/science.1196240Hua, W., Chen, H., Yu, Z.-B., Zou, X., Lin, J., & Sun, J. (2014). A Germanosilicate Structure with 11×11×12-Ring Channels Solved by Electron Crystallography. Angewandte Chemie International Edition, 53(23), 5868-5871. doi:10.1002/anie.201309766Yun, Y., Wan, W., Rabbani, F., Su, J., Xu, H., Hovmöller, S., … Zou, X. (2014). Phase identification and structure determination from multiphase crystalline powder samples by rotation electron diffraction. Journal of Applied Crystallography, 47(6), 2048-2054. doi:10.1107/s1600576714023875Zhang, D., Oleynikov, P., Hovmöller, S., & Zou, X. (2010). Collecting 3D electron diffraction data by the rotation method. Zeitschrift für Kristallographie, 225(2-3). doi:10.1524/zkri.2010.1202X. Zou , S.Hovmoller and P.Oleynikov, Electron Crystallography: Electron Microscopy and Electron Diffraction, Oxford University Press, 2011, ISBN: 978-0-19-958020-0Wan, W., Sun, J., Su, J., Hovmöller, S., & Zou, X. (2013). Three-dimensional rotation electron diffraction: softwareREDfor automated data collection and data processing. Journal of Applied Crystallography, 46(6), 1863-1873. doi:10.1107/s0021889813027714Martinez-Franco, R., Moliner, M., Yun, Y., Sun, J., Wan, W., Zou, X., & Corma, A. (2013). Synthesis of an extra-large molecular sieve using proton sponges as organic structure-directing agents. Proceedings of the National Academy of Sciences, 110(10), 3749-3754. doi:10.1073/pnas.1220733110Su, J., Kapaca, E., Liu, L., Georgieva, V., Wan, W., Sun, J., … Zou, X. (2014). Structure analysis of zeolites by rotation electron diffraction (RED). Microporous and Mesoporous Materials, 189, 115-125. doi:10.1016/j.micromeso.2013.10.014Guo, P., Liu, L., Yun, Y., Su, J., Wan, W., Gies, H., … Zou, X. (2014). Ab initio structure determination of interlayer expanded zeolites by single crystal rotation electron diffraction. Dalton Trans., 43(27), 10593-10601. doi:10.1039/c4dt00458bJiang, J., Yun, Y., Zou, X., Jorda, J. L., & Corma, A. (2015). ITQ-54: a multi-dimensional extra-large pore zeolite with 20 × 14 × 12-ring channels. Chemical Science, 6(1), 480-485. doi:10.1039/c4sc02577fWillhammar, T., Burton, A. W., Yun, Y., Sun, J., Afeworki, M., Strohmaier, K. G., … Zou, X. (2014). EMM-23: A Stable High-Silica Multidimensional Zeolite with Extra-Large Trilobe-Shaped Channels. Journal of the American Chemical Society, 136(39), 13570-13573. doi:10.1021/ja507615bPatinec, V., Wright, P. A., Lightfoot, P., Aitken, R. A., & Cox, P. A. (1999). Synthesis of a novel microporous magnesioaluminophosphate, STA-6, containing an unbound azamacrocycle †. Journal of the Chemical Society, Dalton Transactions, (22), 3909-3911. doi:10.1039/a907259dWragg, D. S., Morris, R., Burton, A. W., Zones, S. I., Ong, K., & Lee, G. (2007). The Synthesis and Structure of SSZ-73:  an All-Silica Zeolite with an Unusual Framework Topology. Chemistry of Materials, 19(16), 3924-3932. doi:10.1021/cm0705284Sheldrick, G. M. (2007). A short history ofSHELX. Acta Crystallographica Section A Foundations of Crystallography, 64(1), 112-122. doi:10.1107/s0108767307043930Jiang, J., Jorda, J. L., Diaz-Cabanas, M. J., Yu, J., & Corma, A. (2010). The Synthesis of an Extra-Large-Pore Zeolite with Double Three-Ring Building Units and a Low Framework Density. Angewandte Chemie International Edition, 49(29), 4986-4988. doi:10.1002/anie.201001506R. A. Young , The Rietveld Method, Oxford University Press, 1995VANKONINGSVELD, H., JANSEN, J., & VANBEKKUM, H. (1990). The monoclinic framework structure of zeolite H-ZSM-5. Comparison with the orthorhombic framework of as-synthesized ZSM-5. Zeolites, 10(4), 235-242. doi:10.1016/0144-2449(94)90134-1Fang, L., Liu, L., Yun, Y., Inge, A. K., Wan, W., Zou, X., & Gao, F. (2014). SU-77: An Open-Framework Germanate Containing 12 × 10 × 10-Ring Channels Solved by Combining Rotation Electron Diffraction and Powder X-ray Diffraction. Crystal Growth & Design, 14(10), 5072-5078. doi:10.1021/cg500681kWessels, T., Baerlocher, C., McCusker, L. B., & Creyghton, E. J. (1999). An Ordered Form of the Extra-Large-Pore Zeolite UTD-1:  Synthesis and Structure Analysis from Powder Diffraction Data. Journal of the American Chemical Society, 121(26), 6242-6247. doi:10.1021/ja990771
    corecore