3,511 research outputs found

    Phase-shift analysis of low-energy π±p\pi^{\pm}p elastic-scattering data

    Full text link
    Using electromagnetic corrections previously calculated by means of a potential model, we have made a phase-shift analysis of the π±p\pi^\pm p elastic-scattering data up to a pion laboratory kinetic energy of 100 MeV. The hadronic interaction was assumed to be isospin invariant. We found that it was possible to obtain self-consistent databases by removing very few measurements. A pion-nucleon model was fitted to the elastic-scattering database obtained after the removal of the outliers. The model-parameter values showed an impressive stability when the database was subjected to different criteria for the rejection of experiments. Our result for the pseudovector πNN\pi N N coupling constant (in the standard form) is 0.0733±0.00140.0733 \pm 0.0014. The six hadronic phase shifts up to 100 MeV are given in tabulated form. We also give the values of the s-wave scattering lengths and the p-wave scattering volumes. Big differences in the s-wave part of the interaction were observed when comparing our hadronic phase shifts with those of the current GWU solution. We demonstrate that the hadronic phase shifts obtained from the analysis of the elastic-scattering data cannot reproduce the measurements of the π−p\pi^- p charge-exchange reaction, thus corroborating past evidence that the hadronic interaction violates isospin invariance. Assuming the validity of the result obtained within the framework of chiral perturbation theory, that the mass difference between the uu- and the dd-quark has only a very small effect on the isospin invariance of the purely hadronic interaction, the isospin-invariance violation revealed by the data must arise from the fact that we are dealing with a hadronic interaction which still contains residual effects of electromagnetic origin.Comment: 43 pages, 6 figure

    Pionic charge exchange on the proton from 40 to 250 MeV

    Full text link
    The total cross sections for pionic charge exchange on hydrogen were measured using a transmission technique on thin CH2 and C targets. Data were taken for pi- lab energies from 39 to 247 MeV with total errors of typically 2% over the Delta-resonance and up to 10% at the lowest energies. Deviations from the predictions of the SAID phase shift analysis in the 60 to 80 MeV region are interpreted as evidence for isospin-symmetry breaking in the s-wave amplitudes. The charge dependence of the Delta-resonance properties appears to be smaller than previously reported

    High Precision Axial Coordinate Readout for an Axial 3-D PET Detector Module using a Wave Length Shifter Strip Matrix

    Get PDF
    We describe a novel method to extract the axial coordinate from a matrix of long axially oriented crystals, which is based on wavelength shifting plastic strips. The method allows building compact 3-D axial gamma detector modules for PET scanners with excellent 3-dimensional spatial, timing and energy resolution while keeping the number of readout channels reasonably low. A voxel resolution of about 10 mm3 is expected. We assess the performance of the method in two independent ways, using classical PMTs and G-APDs to read out the LYSO (LSO) scintillation crystals and the wavelength shifting strips. We observe yields in excess of 35 photoelectrons from the strips for a 511 keV gamma and reconstruct the axial coordinate with a precision of about 2.5 mm (FWHM)

    Novel design of a parallax free Compton enhanced PET scanner

    Get PDF
    Molecular imaging by PET is a powerful tool in modern clinical practice for cancer diagnosis. Nevertheless, improvements are needed with respect to the spatial resolution and sensitivity of the technique for its application to specific human organs (breast, prostate, brain, etc.), and to small animals. Presently, commercial PET scanners do not detect the depth of interaction of photons in scintillators, which results in a not negligible parallax error. We describe here a novel concept of PET scanner design that provides full three-dimensional (3D) gamma reconstruction with high spatial resolution over the total detector volume, free of parallax errors. It uses matrices of long scintillators read at both ends by hybrid photon detectors. This so-called 3D axial concept also enhances the gamma detection efficiency since it allows one to reconstruct a significant fraction of Compton scattered events. In this note, we describe the concept, a possible design and the expected performance of this new PET device. We also report about first characterization measurements of 10 cm long YAP:Ce scintillation crystals. r 2004 Elsevier B.V. All rights reserved

    A segmented Hybrid Photon Detector with integrated auto-triggering front-end electronics for a PET scanner

    Get PDF
    We describe the design, fabrication and test results of a segmented Hybrid Photon Detector with integrated auto-triggering front-end electronics. Both the photodetector and its VLSI readout electronics are custom designed and have been tailored to the requirements of a recently proposed novel geometrical concept of a Positron Emission Tomograph. Emphasis is put on the PET specific features of the device. The detector has been fabricated in the photocathode facility at CERN

    Novel geometrical concept of a high-performance brain PET scanner. Principle, design and performance estimates

    Get PDF
    We present the principle, a possible implementation and performance estimates of a novel geometrical concept for a high-resolution positron emission tomograph. The concept, which can be for example implemented in a brain PET device, promises to lead to an essentially parallax-free 3D image reconstruction with excellent spatial resolution and constrast, uniform over the complete field of view. The key components are matrices of long axially oriented scintillator crystals which are read out at both extremities by segmented Hybrid Photon Detectors. We discuss the relevant design considerations for a 3D axial PET camera module, motivate parameter and material choices, and estimate its performance in terms of spatial and energy resolution. We support these estimates by Monte Carlo simulations and in some cases by first experimental results. From the performance of a camera module, we extrapolate to the reconstruction resolution of a 3D axial PET scanner in a semi-analytical way and compare it to an existing state-of-the art brain PET device. We finally describe a dedicated data acquisition system, capable to fully exploit the advantages of the proposed concept. We conclude that the proposed 3D axial concept and the discussed implementation is a competitive approach for high-resolution brain PET. Excellent energy resolution and Compton enhanced sensitivity are expected to lead to high-quality reconstruction and reduced scanning times

    Optimization of the effective light attenuation length of YAP:Ce and LYSO:Ce crystals for a novel geometrical PET concept

    Get PDF
    Abstract The effective light attenuation length in thin bars of polished YAP:Ce and LYSO:Ce scintillators with lengths of the order of 10 cm has been studied for various wrappings and coatings of the crystal lateral surfaces. This physical parameter plays a key role in a novel 3D PET concept based on axial arrays of long scintillator bars read out at both ends by Hybrid Photodetectors (HPDs) since it influences the spatial, energy and time resolutions of such a device. In this paper we show that the effective light attenuation length of polished crystals can be reduced by wrapping their lateral surfaces with Teflon, or tuned to the desired value by depositing a coating of Cr or Au of well-defined thickness. The studies have been carried out with YAP and LYSO long scintillator bars, read out by standard photomultiplier tubes. Even if the novel PET device will use different scintillators and HPD readout, the results described here prove the feasibility of an important aspect of the concept and provide hints on the potential capabilities of the device

    AX-PET: A novel PET concept with G-APD readout

    Get PDF
    Abstract The AX-PET collaboration has developed a novel concept for high resolution PET imaging to overcome some of the performance limitations of classical PET cameras, in particular the compromise between spatial resolution and sensitivity introduced by the parallax error. The detector consists of an arrangement of long LYSO scintillating crystals axially oriented around the field of view together with arrays of wave length shifter strips orthogonal to the crystals. This matrix allows a precise 3D measurement of the photon interaction point. This is valid both for photoelectric absorption at 511 keV and for Compton scattering down to deposited energies of about 100 keV. Crystals and WLS strips are individually read out using Geiger-mode Avalanche Photo Diodes (G-APDs). The sensitivity of such a detector can be adjusted by changing the number of layers and the resolution is defined by the crystal and strip dimensions. Two AX-PET modules were built and fully characterized in dedicated test set-ups at CERN, with point-like 22 Na sources. Their performance in terms of energy ( R energy ≈ 11.8 % (FWMH) at 511 keV) and spatial resolution was assessed ( σ axial ≈ 0.65 mm ), both individually and for the two modules in coincidence. Test campaigns at ETH Zurich and at the company AAA allowed the tomographic reconstructions of more complex phantoms validating the 3D reconstruction algorithms. The concept of the AX-PET modules will be presented together with some characterization results. We describe a count rate model which allows to optimize the planing of the tomographic scans
    • 

    corecore