5 research outputs found

    Cystinosis: practical tools for diagnosis and treatment

    Get PDF
    Cystinosis is the major cause of inherited Fanconi syndrome, and should be suspected in young children with failure to thrive and signs of renal proximal tubular damage. The diagnosis can be missed in infants, because not all signs of renal Fanconi syndrome are present during the first months of life. In older patients cystinosis can mimic idiopathic nephrotic syndrome due to focal and segmental glomerulosclerosis. Measuring elevated white blood cell cystine content is the corner stone for the diagnosis. The diagnosis is confirmed by molecular analysis of the cystinosin gene. Corneal cystine crystals are invariably present in all patients with cystinosis after the age of 1 year. Treatment with the cystine depleting drug cysteamine should be initiated as soon as possible and continued lifelong to prolong renal function survival and protect extra-renal organs. This educational feature provides practical tools for the diagnosis and treatment of cystinosis

    RGS2 inhibits the epithelial Ca2+ channel TRPV6.

    No full text
    Contains fulltext : 50327.pdf (Publisher’s version ) (Open Access)The epithelial Ca(2+) channels TRPV5 and TRPV6 constitute the apical Ca(2+) entry pathway in the process of active Ca(2+) (re)absorption. By yeast two-hybrid and glutathione S-transferase pulldown analysis we identified RGS2 as a novel TRPV6-associated protein. RGS proteins determine the inactivation kinetics of heterotrimeric G-protein-coupled receptor (GPCR) signaling by regulating the GTPase activity of G(alpha) subunits. Here we demonstrate that TRPV6 interacts with the NH(2)-terminal domain of RGS2 in a Ca(2+)-independent fashion and that overexpression of RGS2 reduces the Na(+) and Ca(2+) current of TRPV6 but not that of TRPV5-transfected human embryonic kidney 293 (HEK293) cells. In contrast, overexpression of the deletion mutant DeltaN-RGS2, lacking the NH(2)-terminal domain of RGS2, in TRPV6-expressing HEK293 cells did not show this inhibition. Furthermore, cell surface biotinylation indicated that the inhibitory effect of RGS2 on TRPV6 activity is not mediated by differences in trafficking or retrieval of TRPV6 from the plasma membrane. This effect probably results from the direct interaction between RGS2 and TRPV6, affecting the gating properties of the channel. Finally, the scaffolding protein spinophilin, shown to recruit RGS2 and regulate GPCR-signaling via G(alpha), did not affect RGS2 binding and electrophysiological properties of TRPV6, indicating a GPCR-independent mechanism of TRPV6 regulation by RGS2

    Identification of Nipsnap1 as a novel auxiliary protein inhibiting TRPV6 activity.

    No full text
    Item does not contain fulltextThe transient receptor potential vanilloid channels 5 and 6 (TRPV5/6) are the most Ca(2+)-selective channels within the TRP superfamily of ion channels. These epithelial Ca(2+) channels are regulated at different intra- and extracellular sites by the feedback response of Ca(2+) itself, calciotropic hormones, and by TRPV5/6-associated proteins. In the present study, bioinformatics was used to search for novel TRPV5/6-associated genes. By including pull-down assays and functional analysis, Nipsnap1-a hitherto functionally uncharacterized globular protein-was identified as a novel factor involved in the regulation of TRPV6. Electrophysiological recordings revealed that Nipsnap1 abolishes TRPV6 currents. Subsequent biotinylation assays showed that TRPV6 plasma membrane expression did not change in the presence of Nipsnap1, suggesting that TRPV6 inhibition by Nipsnap1 is independently regulated from reduced cell surface channel expression. In addition, semi-quantitative reverse transcriptase PCR and immunohistochemical labeling of Nipsnap1 indicated that Nipsnap1 is expressed in mouse intestinal tissues-where TRPV6 is predominantly expressed-but that it does not co-localize with TRPV5 in the kidney. In conclusion, this study presents the first physiological function of Nipsnap1 as an associated protein inhibiting TRPV6 activity that possibly exerts its effect directly at the plasma membrane
    corecore