283 research outputs found

    Behavior of nanocomposite consisting of manganese ferrite particles and atomic layer deposited bismuth oxide chloride film

    Get PDF
    Nanocomposites of manganese ferrite and bismuth oxide chloride were synthesized. The composites consisted of 10 nm thick nanocrystalline bismuth oxide chloride thin film grown by atomic layer deposition on spinel MnFe2O4 nanoparticles prepared by wet chemical synthesis. The composite layers exhibited nonlinear polarization behavior in both magnetic and electric fields at room temperature. The magnetic coercive force, HC, was 30 – 40 Oe at room temperature. The width of electrical charge – voltage hysteresis loop reached 3.6 MV/cm.Peer reviewe

    Properties of Atomic Layer Deposited Nanolaminates of Zirconium and Cobalt Oxides

    Get PDF
    Five-layer crystalline thin film structures were formed, consisting of ZrO2 and Co3O4 alternately grown on Si(100) substrates by atomic layer deposition at 300 degrees C using ZrCl4 and Co(acac)(3) as the metal precursors and ozone as the oxygen precursor. The performance of the laminate films was dependent on the relative content of constituent oxide layers. The magnetization in these films was nonlinear, saturative, and with very weak coercive fields. Electrical measurements revealed the formation of significant polarization versus external field loops and implied some tendency toward memristive behavior. (C) The Author(s) 2018. Published by ECS.Peer reviewe

    Magnetic and Electrical Performance of Atomic Layer Deposited Iron Erbium Oxide Thin Films

    Get PDF
    Mixed films of a high-permittivity oxide, Er2O3, and a magnetic material, Fe2O3, were grown by atomic layer deposition on silicon and titanium nitride at 375 degrees C using erbium diketonate, ferrocene, and ozone as precursors. Crystalline phases of erbium and iron oxides were formed. Growth into three-dimensional trenched structures was demonstrated. A structure deposited using tens to hundreds subsequent cycles for both constituent metal oxide layers promoted both charge polarization and saturative magnetization compared to those in the more homogeneously mixed films.Peer reviewe

    Atomic Layer Deposition and Performance of ZrO2-Al2O3 Thin Films

    Get PDF
    Thin mixed and nanolaminate films of ZrO2 and Al2O3 were grown by atomic layer deposition from the corresponding metal chlorides and water. The films were grown at 350 degrees C in order to ensure ZrO2 crystallization in the as-deposited state. The relative thicknesses of layers in the structure of the nanolaminates were controlled in order to maximize the content of metastable polymorphs of ZrO2 that have higher permittivity than that of the stable monoclinic ZrO2 . The multilayer films demonstrated interfacial charge polarization and saturative magnetization in external fields. The conductivity of the films could be switched between high and low resistance states by applying voltages of alternating polarity. (C) 2018 The Electrochemical Society.Peer reviewe

    Atomic layer deposited nanolaminates of zirconium oxide and manganese oxide from manganese(III)acetylacetonate and ozone

    Get PDF
    ProducciĂłn CientĂ­ficaAtomic layer deposition method was used to grow thin films consisting of ZrO2 and MnOx layers. All depositions were carried out at 300 ÂşC. Some deposition characteristics of the manganese(III)acetylacetonate and ozone process were investigated, such as crystallinity and the dependence of growth rate on the deposition temperature. All films were partly crystalline in their as-deposited state. Zirconium oxide contained cubic and tetragonal phases of ZrO2, while the manganese oxide was shown to consist of cubic Mn2O3 and tetragonal Mn3O4 phases. All the films exhibited nonlinear saturative magnetization with hysteresis, as well as resistive switching characteristics.Fondo Europeo de Desarrollo Regional (projects TK134 and TK141)Ministerio de EconomĂ­a, Industria y Competitividad (project TEC2017-84321-C4-2-R)Estonian Research Agency (projects PRG4 and PRG753

    Magnetic properties and resistive switching in mixture films and nanolaminates consisting of iron and silicon oxides grown by atomic layer deposition

    Get PDF
    SiO2-Fe2O3 mixture films and nanolaminates were grown by atomic layer deposition from iron trichloride, hexakis(ethylamino)disilane, and ozone at 300 degrees C. Orthorhombic -Fe2O3 was identified in Fe2O3 reference films and in Fe2O3 layers grown to certain thicknesses between amorphous SiO2 layers. SiO2-Fe2O3 films could be magnetized in external fields, exhibiting saturation and hysteresis in nonlinear magnetization-field curves. Electrical resistive switching, markedly dependent on the ratio of the component oxides, was also observed in films with proper composition. For relatively conductive films, application of small signal measurements allowed one to record memory maps with notable squareness and defined distinction between high and low conductance states.Peer reviewe

    Atomic layer deposition of titanium oxide films on As-synthesized magnetic Ni particles : Magnetic and safety properties

    Get PDF
    Spherical nickel particles with size in the range of 100-400 nm were synthesized by non-aqueous liquid phase benzyl alcohol method. Being developed for magnetically guided biomedical applications, the particles were coated by conformal and antimicrobial thin titanium oxide films by atomic layer deposition. The particles retained their size and crystal structure after the deposition of oxide films. The sensitivity of the coated particles to external magnetic fields was increased compared to that of the uncoated powder. Preliminary toxicological investigations on microbial cells and small aquatic crustaceans revealed non-toxic nature of the synthesized particles.Peer reviewe

    Atomic Layer Deposition and Properties of HfO2-Al2O3 Nanolaminates

    Get PDF
    Nanocrystalline HfO2:Al2O3 mixture films and nanolaminates were grown by atomic layer deposition at 350 degrees C from metal chloride precursors and water. Formation of metastable HfO2 polymorphs versus monoclinic phase was affected by the relative amount and thickness of constituent oxide layers. The films exhibited saturative magnetization and charge polarization in externally applied fields at room temperature. The films also demonstrated resistive switching behavior with considerable window between low and high resistance states. (C) The Author(s) 2018. Published by ECS.Peer reviewe

    Atomic Layer Deposition of Intermetallic Co3Sn2 and Ni3Sn2 Thin Films

    Get PDF
    Intermetallics form a versatile group of materials that possess unique properties ranging from superconductivity to giant magnetoresistance. The intermetallic Co-Sn and Ni-Sn compounds are promising materials for magnetic applications as well as for anodes in lithium- and sodium-ion batteries. Herein, a method is presented for the preparation of Co3Sn2 and Ni3Sn2 thin films using diamine adducts of cobalt(II) and nickel(II) chlorides, CoCl2(TMEDA) and NiCl2(TMPDA) (TMEDA = N,N,N ',N '-tetramethylethylenediamine, TMPDA = N,N,N ',N '-tetramethyl-1,3-propanediamine) combined with tributyltin hydride. The films are grown by atomic layer deposition (ALD), a technique that enables conformal film deposition with sub-nanometer thickness control. The Co3Sn2 process fulfills the typical ALD qualifications, such as self-limiting growth, excellent film uniformity, and conformal coverage of a trench structure. X-ray diffraction (XRD) shows reflections characteristic to the hexagonal Co3Sn2 phase, which confirms that the films are, indeed, intermetallic instead of being mere alloys of Co and Sn. The films are extremely pure with impurity levels each below 1.0 at.%. Ni3Sn2 films similarly exhibit the expected XRD reflections for the intermetallic phase and are of high purity. The Co3Sn2 film show magnetic hysteresis with high coercivity values exceeding 500 Oe, indicating great potential in terms of applicability of the films.Peer reviewe
    • …
    corecore