2,639 research outputs found

    The General Correlation Function in the Schwinger Model on a Torus

    Full text link
    In the framework of the Euclidean path integral approach we derive the exact formula for the general N-point chiral densities correlator in the Schwinger model on a torusComment: 17 pages, misprints corrected, references adde

    Predictability sieve, pointer states, and the classicality of quantum trajectories

    Full text link
    We study various measures of classicality of the states of open quantum systems subject to decoherence. Classical states are expected to be stable in spite of decoherence, and are thought to leave conspicuous imprints on the environment. Here these expected features of environment-induced superselection (einselection) are quantified using four different criteria: predictability sieve (which selects states that produce least entropy), purification time (which looks for states that are the easiest to find out from the imprint they leave on the environment), efficiency threshold (which finds states that can be deduced from measurements on a smallest fraction of the environment), and purity loss time (that looks for states for which it takes the longest to lose a set fraction of their initial purity). We show that when pointer states -- the most predictable states of an open quantum system selected by the predictability sieve -- are well defined, all four criteria agree that they are indeed the most classical states. We illustrate this with two examples: an underdamped harmonic oscillator, for which coherent states are unanimously chosen by all criteria, and a free particle undergoing quantum Brownian motion, for which most criteria select almost identical Gaussian states (although, in this case, predictability sieve does not select well defined pointer states.)Comment: 10 pages, 13 figure

    Finite-Time Disentanglement via Spontaneous Emission

    Full text link
    We show that under the influence of pure vacuum noise two entangled qubits become completely disentangled in a finite time, and in a specific example we find the time to be given by ln(2+22)\ln \Big(\frac{2 +\sqrt 2}{2}\Big) times the usual spontaneous lifetime.Comment: revtex, 4 pages, 2 figure

    Non-Markovianity, Loschmidt echo and criticality: a unified picture

    Get PDF
    A simple relationship between recently proposed measures of non-Markovianity and the Loschmidt echo is established, holding for a two-level system (qubit) undergoing pure dephasing due to a coupling with a many-body environment. We show that the Loschmidt echo is intimately related to the information flowing out from and occasionally back into the system. This, in turn, determines the non-Markovianity of the reduced dynamics. In particular, we consider a central qubit coupled to a quantum Ising ring in the transverse field. In this context, the information flux between system and environment is strongly affected by the environmental criticality; the qubit dynamics is shown to be Markovian exactly and only at the critical point. Therefore non-Markovianity is an indicator of criticality in the model considered here

    Sum Rules for the Dirac Spectrum of the Schwinger Model

    Full text link
    The inverse eigenvalues of the Dirac operator in the Schwinger model satisfy the same Leutwyler-Smilga sum rules as in the case of QCD with one flavor. In this paper we give a microscopic derivation of these sum rules in the sector of arbitrary topological charge. We show that the sum rules can be obtained from the clustering property of the scalar correlation functions. This argument also holds for other theories with a mass gap and broken chiral symmetry such as QCD with one flavor. For QCD with several flavors a modified clustering property is derived from the low energy chiral Lagrangian. We also obtain sum rules for a fixed external gauge field and show their relation with the bosonized version of the Schwinger model. In the sector of topological charge ν\nu the sum rules are consistent with a shift of the Dirac spectrum away from zero by ν/2\nu/2 average level spacings. This shift is also required to obtain a nonzero chiral condensate in the massless limit. Finally, we discuss the Dirac spectrum for a closely related two-dimensional theory for which the gauge field action is quadratic in the the gauge fields. This theory of so called random Dirac fermions has been discussed extensively in the context of the quantum Hall effect and d-wave super-conductors.Comment: 41 pages, Late

    Sudden Death of Entanglement of Two Jaynes-Cummings Atoms

    Full text link
    We investigate entanglement dynamics of two isolated atoms, each in its own Jaynes-Cummings cavity. We show analytically that initial entanglement has an interesting subsequent time evolution, including the so-called sudden death effect.Comment: 3 pages, 3 figure

    Decoherence and the Nature of System-Environment Correlations

    Full text link
    We investigate system-environment correlations based on the exact dynamics of a qubit and its environment in the framework of pure decoherence (phase damping). We focus on the relation of decoherence and the build-up of system-reservoir entanglement for an arbitrary (possibly mixed) initial qubit state. In the commonly employed regime where the qubit dynamics can be described by a Markov master equation of Lindblad type, we find that for almost all qubit initial states inside the Bloch sphere, decoherence is complete while the total state is still separable - no entanglement is involved. In general, both "separable" and "entangling" decoherence occurs, depending on temperature and initial qubit state. Moreover, we find situations where classical and quantum correlations periodically alternate as a function of time in the regime of low temperatures

    Emergence of pointer states in a non-perturbative environment

    Full text link
    We show that the pointer basis distinguished by collisional decoherence consists of exponentially localized, solitonic wave packets. Based on the orthogonal unraveling of the quantum master equation, we characterize their formation and dynamics, and we demonstrate that the statistical weights arising from an initial superposition state are given by the required projection. Since the spatial width of the pointer states can be obtained by accounting for the gas environment in a microscopically realistic fashion, one may thus calculate the coherence length of a strongly interacting gas.Comment: 8 pages, 1 figure; corresponds to published versio

    Interaction-induced decoherence in non-Hermitian quantum walks of ultracold Bosons

    Full text link
    We study the influence of particle interaction on a quantum walk on a bipartite one-dimensional lattice with decay from every second site. The corresponding non-interacting (linear) system has been shown to have a topological transition described by the average displacement before decay. Here we use this topological quantity to distinguish coherent quantum dynamics from incoherent classical dynamics caused by a breaking of the translational symmetry. We furthermore analyze the behavior by means of a rate equation providing a quantitative description of the incoherent nonlinear dynamics.Comment: Revised and extended version, 5 pages, 5 figure
    corecore