2,684 research outputs found

    WATCHFUL OBSERVATION VERSUS EARLY AORTIC VALVE REPLACEMENT FOR SYMPTOMATIC PATIENTS WITH LOW-GRADIENT SEVERE AORTIC STENOSIS AND PRESERVED EJECTION FRACTION

    Get PDF
    Brief Communications Arising: arising from X. Dong, B. Milholland & J. Vijg Nature 538, 257ā€“259 (2016); doi:10.1038/nature19793. Comments by: Beer, J.A.A. de, Bardoutsos, A. & Janssen, F. (2017)

    Utilizing ECG Waveform Features as New Biometric Authentication Method

    Get PDF
    In this study, we are proposing a practical way for human identification based on a new biometric method. The new method is built on the use of the electrocardiogram (ECG) signal waveform features, which are produced from the process of acquiring electrical activities of the heart by using electrodes placed on the body. This process is launched over a period of time by using a recording device to read and store the ECG signal. On the contrary of other biometrics method like voice, fingerprint and iris scan, ECG signal cannot be copied or manipulated. The first operation for our system is to record a portion of 30 seconds out of whole ECG signal of a certain user in order to register it as user template in the system. Then the system will take 7 to 9 seconds in authenticating the template using template matching techniques. 44 subjectsā€Ÿ raw ECG data were downloaded from Physionet website repository. We used a template matching technique for the authentication process and Linear SVM algorithm for the classification task. The accuracy rate was 97.2% for the authentication process and 98.6% for the classification task; with false acceptance rate 1.21%

    Matrix Metalloproteinase-3 Causes Dopaminergic Neuronal Death through Nox1-Regenerated Oxidative Stress

    Get PDF
    In the present study we investigated the interplay between matrix metalloproteinase 3 (MMP3) and NADPH oxidase 1 (Nox1) in the process of dopamine (DA) neuronal death. We found that MMP3 activation causes the induction of Nox1 via mitochondrial reactive oxygen species (ROS) production and subsequently Rac1 activation, eventually leading to Nox1-derived superoxide generation in a rat DA neuronal N27 cells exposed to 6-OHDA. While a MMP3 inhibitor, NNGH, largely attenuated mitochondrial ROS and subsequent Nox1 induction, both apocynin, a putative Nox inhibitor and GKT137831, a Nox1 selective inhibitor failed to reduce 6-OHDA-induced mitochondrial ROS. However, both inhibitors for MMP3 and Nox1 similarly attenuated 6-OHDA-induced N27 cell death. RNAi-mediated selective inhibition of MMP3 or Nox1 showed that knockdown of either MMP3 or Nox1 significantly reduced 6-OHDA-induced ROS generation in N27 cells. While 6-OHDA-induced Nox1 was abolished by MMP3 knockdown, Nox1 knockdown did not alter MMP3 expression. Direct overexpression of autoactivated MMP3 (actMMP3) in N27 cells or in rat substantia nigra (SN) increased expression of Nox1. Selective knockdown of Nox1 in the SN achieved by adeno-associated virus-mediated overexpression of Nox1-specific shRNA largely attenuated the actMMP3-mediated dopaminergic neuronal loss. Furthermore, Nox1 expression was significantly attenuated in Mmp3 null mice treated with N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Together we established novel molecular mechanisms underlying oxidative stress-mediated dopaminergic neuronal death in which MMP3 activation is a key upstream event that leads to mitochondrial ROS, Nox1 induction and eventual dopaminergic neuronal death. Our findings may lead to the development of novel therapeutic approach

    Matrix Metalloproteinase-3 Causes Dopaminergic Neuronal Death through Nox1-Regenerated Oxidative Stress

    Get PDF
    In the present study we investigated the interplay between matrix metalloproteinase 3 (MMP3) and NADPH oxidase 1 (Nox1) in the process of dopamine (DA) neuronal death. We found that MMP3 activation causes the induction of Nox1 via mitochondrial reactive oxygen species (ROS) production and subsequently Rac1 activation, eventually leading to Nox1-derived superoxide generation in a rat DA neuronal N27 cells exposed to 6-OHDA. While a MMP3 inhibitor, NNGH, largely attenuated mitochondrial ROS and subsequent Nox1 induction, both apocynin, a putative Nox inhibitor and GKT137831, a Nox1 selective inhibitor failed to reduce 6-OHDA-induced mitochondrial ROS. However, both inhibitors for MMP3 and Nox1 similarly attenuated 6-OHDA-induced N27 cell death. RNAi-mediated selective inhibition of MMP3 or Nox1 showed that knockdown of either MMP3 or Nox1 significantly reduced 6-OHDA-induced ROS generation in N27 cells. While 6-OHDA-induced Nox1 was abolished by MMP3 knockdown, Nox1 knockdown did not alter MMP3 expression. Direct overexpression of autoactivated MMP3 (actMMP3) in N27 cells or in rat substantia nigra (SN) increased expression of Nox1. Selective knockdown of Nox1 in the SN achieved by adeno-associated virus-mediated overexpression of Nox1-specific shRNA largely attenuated the actMMP3-mediated dopaminergic neuronal loss. Furthermore, Nox1 expression was significantly attenuated in Mmp3 null mice treated with N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Together we established novel molecular mechanisms underlying oxidative stress-mediated dopaminergic neuronal death in which MMP3 activation is a key upstream event that leads to mitochondrial ROS, Nox1 induction and eventual dopaminergic neuronal death. Our findings may lead to the development of novel therapeutic approach

    Seek or Provide: Comparative Effects of Online Information Sharing on Seniorsā€™ Quality of Life

    Get PDF
    Seniorsā€™ social activities are critical in assuring their quality of life, and seniorsā€™ quality of life (QoL) declines with the deterioration of their social activity. Social support from online social relationships has been considered to be important determinants of QoL, and is an important goal of the design of online health communities to support patient-centered e-health initiatives. In this study, we find that, rather than attempting to improve seniorsā€™ quality of life through interventions and online community platforms that are designed directly to increase social interactions and focus on social relationship formation, it is more effective for such online health communities to be designed to facilitate information sharing. Information sharing may be an easy way for seniors to become familiar with the online environment and pave the way for subsequent online social relationships. This study investigated seniorsā€™ online information sharing behaviors and the impacts on their quality of life. Survey data from 130 seniors was used to test our research model. Seniorsā€™ online information seeking and provision indirectly affect their quality of life, and the relative importance of information seeking and information provision varies depending on the seniorsā€™ perceived subjective age, i.e., cognitive age

    Generation of high concentration nanobubbles based on friction tubes

    Full text link
    Nanobubble-related technologies have been confirmed to be useful in various fields such as climate change and the environment as well as water-based industries such as water purification, crops, horticulture, medical care, bio, and sterilization. However, a method of mass production in real time enough to apply nano-bubbles to the industry has not yet been developed. We explored the mechanism of nano-bubble water generation by friction between water and walls and developed a tube device applying the shape of the flow path to maximize the friction in the fluid passing through the flow path. It also describes the case of real-time and low-power mass production of nanobubbles and its technical utility. We found that the friction of nanotubes alone can easily and quickly improve the production of nanobubbles with small particle size in real time; by increasing the shearing pressure while increasing the effective friction constant value, the particle size of nanobubbles can be smaller while increasing the particle concentration.Comment: 24 pages, 24 figures, 6 table

    Real-Time Depth-Based Hand Detection and Tracking

    Get PDF
    This paper illustrates the hand detection and tracking method that operates in real time on depth data. To detect a hand region, we propose the classifier that combines a boosting and a cascade structure. The classifier uses the features of depth-difference at the stage of detection as well as learning. The features of each candidate segment are to be computed by subtracting the averages of depth values of subblocks from the central depth value of the segment. The features are selectively employed according to their discriminating power when constructing the classifier. To predict a hand region in a successive frame, a seed point in the next frame is to be determined. Starting from the seed point, a region growing scheme is applied to obtain a hand region. To determine the central point of a hand, we propose the so-called Depth Adaptive Mean Shift algorithm. DAM-Shift is a variant of CAM-Shift (Bradski, 1998), where the size of the search disk varies according to the depth of a hand. We have evaluated the proposed hand detection and tracking algorithm by comparing it against the existing AdaBoost (Friedman et al., 2000) qualitatively and quantitatively. We have analyzed the tracking accuracy through performance tests in various situations

    17Ī²-Estradiol strongly inhibits azoxymethane/dextran sulfate sodium-induced colorectal cancer development in Nrf2 knockout male mice

    Get PDF
    Ā© 2020 The Author(s)Nuclear factor erythroid 2-related factor 2 (Nrf2) has dual effects on inflammation and cancer progression depending on the microenvironment. Estrogens have a protective effect on colorectal cancer (CRC) development. The aim of this study was to investigate CRC development in Nrf2 knockout (KO) mice. Azoxymethane (AOM) and dextran sulfate sodium (DSS)-treated wild-type (WT) and Nrf2 KO male mice were sacrificed at weeks 2 and 16 after AOM injection with/without 17Ī²-estradiol (E2) treatment during week 1. Disease activity index and colon tissue damage at week 2 showed strong attenuation following E2 administration in WT mice but to a lesser extent in Nrf2 KO male mice. At week 16, E2 significantly diminished AOM/DSS-induced adenoma/cancer incidence at distal colon in the Nrf2 KO group, but not in the WT. Furthermore, mRNA or protein levels of NF-ĪŗB-related mediators (i.e., iNOS, TNF-Ī±, and IL-1Ī²) and Nrf2-related antioxidants (i.e., NQO1 and HO-1) were significantly lower in the Nrf2 KO group regardless of E2 treatment compared to the WT. The expression of estrogen receptor beta (ERĪ²) was higher in the Nrf2 KO group than in the WT. In conclusion, estrogen further inhibits CRC by upregulating ERĪ²-related alternate pathways in the absence of Nrf2.

    Thermal Effects of Microwave Reduced-Graphene-Oxide Coated Polyester Fabric on a Simulated Human Skin in Cool and Neutral Air Temperatures

    Get PDF
    Batteryless wearable technology has wide applications. In particular, human body surface temperature controlling fabrics can help regulate skin temperature in heat or cold. This study investigated surface temperature distribution of the fabrics coated with reduced graphene oxide (rGO) on simulated human body skin conditions at 18 degrees C (cool) and 27 degrees C (neutral) ambient air temperatures. Polyester fabrics were spin-coated with a graphene-oxide (GO) solution of 0.2 wt%. Preparation of rGO was processed by using a microwave oven (MW-rGO). Non-treated fabric (CON) was compared to GO and MW-rGO. The surface temperature of a hot plate was maintained at 35 degrees C or 40 degrees C. The test fabrics were put on the heated hot plate or non-heated-outer portions of the hot plate. Surface temperatures of MW-rGO on the heated hot plate at an air temperature of 18 degrees C (cool) were higher than those of non-treated fabric (CON) under the same conditions (p < 0.01). No effects from the graphene treatment were found on non-heated portions of the graphene oxide fabric (GO) or the reduced graphene oxide fabric (MW-rGO). On the non-heated portions, surface temperatures were higher at the location closer to the hot plate compared to the location farther from the hot plate (p < 0.05). These results partially represent thermal effects of MW-rGO under a specific environment and heat source. Our findings enable an application of reduced graphene oxide to body temperature regulating clothing.
    • ā€¦
    corecore