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This paper illustrates the hand detection and tracking method that operates in real time on depth data. To detect a hand region,
we propose the classifier that combines a boosting and a cascade structure. The classifier uses the features of depth-difference at
the stage of detection as well as learning. The features of each candidate segment are to be computed by subtracting the averages
of depth values of subblocks from the central depth value of the segment. The features are selectively employed according to their
discriminating power when constructing the classifier. To predict a hand region in a successive frame, a seed point in the next
frame is to be determined. Starting from the seed point, a region growing scheme is applied to obtain a hand region. To determine
the central point of a hand, we propose the so-called Depth Adaptive Mean Shift algorithm. DAM-Shift is a variant of CAM-
Shift (Bradski, 1998), where the size of the search disk varies according to the depth of a hand. We have evaluated the proposed
hand detection and tracking algorithm by comparing it against the existing AdaBoost (Friedman et al., 2000) qualitatively and
quantitatively. We have analyzed the tracking accuracy through performance tests in various situations.

1. Introduction

In the past decade, there have been intensive studies on the
automatic analyses of human behaviors. Among the study
areas, the human-computer interaction field has attracted
the most attention, and there have been many studies on
human gesture recognition. A gesture is an effective non-
verbal communication tool that helps in complex human
interactions with its ability for simple communication. Hand
gesture recognition is applied to many fields from a sign
language system for the hearing impaired to smart devices for
effective interactions. Various gesture recognition approaches
that involve hand region detection, hand feature extraction,
and learning and recognition methods have been reported.
The existing studies include the use of a data glove to analyze
hand images [1–3], color data [4, 5], combination of color and
depth data [6–8], and depth data alone [9–13]. The use of a
data glove is limited and difficult to build an easy interface
because of its requirement of a connecting line to connect to
the entire system.

The methods that use color images use such information
as skin color or edges. Suk and Sin [4] detect a face and
hand region using Haar-like features and combined the skin

color model. The detected region is tracked using a Gauss
function and recognized by the tracked path. The drawbacks
of this method are that it requires a preceding condition,
that is, face detection prior to hand detection, and that it
is sensitive to light changes. Bhuyan et al. [5] detect a hand
region using the distribution of skin colors in the RGB
space and the conditional probabilities of the foreground
and the background. The hand and arm regions are divided
by detecting the center point and the main direction of the
hand from the detected hand region, and the fingertip is
detected on the basis of the geometric features of the hand
region. However, this method has the following drawbacks:
(1) it detects the hand region by using the existing skin color
model. (2) Its experimental environment is very limited. (3)
It is sensitive to the occlusion of the hand region with object
neighbors.

Many studies that combine it with depth data have been
carried out to nullify the weakness of the color data method
with respect to environmental changes. Park et al. [6], under
the assumption that the hand lies before the body, draw an
accumulated histogram from a depth image of Kinect to find
the candidate hand regions and detect a final hand region
by using Bayes’ rule and the skin color to find the precise
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hand region. This method performs considerably better than
the sole use of the color and depth data, but performance
decreases in darkness because of its basic assumption; that
is, the hand always lies before the body and the use of
color. Van den Bergh and Van Gool [7] proposed a mixed
method; that is, it detects a face from the RGB image,
deletes the background by applying the threshold value of
the distance of the detected face, and then detects the hand
region from the remaining region. This method also is more
precise than the methods that use either a color or a depth
image but needs more computation and cannot be used
under dim lighting. Trindade et al. [8] perform skin color
filtering by using the RGB color from the RGB-D sensor
prior to detecting the body, face, and hand regions, distribute
the histogram according to the depth axis, and filter out
the hand region on the basis of a threshold value. Then,
the outliers are deleted by 𝑘-means clustering to detect the
center point of the hand region, which becomes the base
point for hand region detection and pose recognition. This
method, with a combined use of color and depth data, could
improve precision in the detection process by removing
outliers during filtering and applying a clustering technique.
However, it is weak with respect to the change of lighting and
is vulnerable to errors as it goes through several processes
until the hand region detection.

Although themethods that combine color and depth data
improve the detection of hand region, they are still limited
because of the color dependability. There are also studies
that did not require color data and used only depth data.
Mo and Neumann [9] define a hand model to recognize a
figure of a hand at a low resolution and use the depth data
inputted from a laser-based camera. They assume that the
closest region from the camera is the hand of a user and then
divide the hand, wrist, and background regions. However,
it fails to detect these regions when the hand is positioned
behind the body or there is an object between the camera and
the hand. Liu and Fujimura [10] assume an object within a
certain distance from the camera as a human and detect the
face by horizontal and vertical projections. For the gesture
recognition, it is assumed that the hands are in general apart
from the body; therefore, the hand regions are detected by
using a proportionate constant to separate the hands from
the arms. However, for this method, the face should be in
the image, and its use gets limited when there are multiple
people. In order to divide an arm region, Malassiotis and
Strintzis [11] sequentially scan the depth image, perform the
initial clustering, and divide each pixel from the initially
clustered pixels based on the distance from its neighbors.
Then, the neighboring clusters are combined, and the arm
region is finally detected. The arm’s coordinates are statically
modeled in a 3D space to divide the hand from the forearm.
The Gaussian mixture model is used for calculating the
probability distribution of the 3D 𝑥-coordinates and then
to detect the hand and the forearm regions. This method
detects a static pose, but it is limited when used for dynamic
gesture recognition because the distribution model needs
to be revised when the depth data change. Suryanarayan et
al. [12] proposed 2D figure data, a compressed 3D figure
descriptor, and a 3D volumemetric figure descriptor for hand
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Figure 1: System flow.

pose recognition that uses depth data.The hand is detected by
creating a histogram of depth values and the detected hand
is separated from others by Otsu’s threshold method. This
method is also limited when there is another object between
the camera and the hand. Oikonomidis et al. [13] used a
Kinect camera sensor [14] to detect a hand. It uses the hand
model with all degrees of freedom. Then, it initializes the
hand model with the hypothesized pose and keeps tracking
a hand in real time by updating the handmodel.This method
optimizes the hand model parameters through minimizing
the difference between the assumed hand model in the 3D
space and the actual hand. However, it recognizes the hand
pose by comparing adjacent distances; therefore, an errormay
occur because the hand pose becomes increasingly blurry
with an increase in the distance.

Figure 1 shows system flowchart. The proposed system
consists of main two steps with hand detection and tracking.
In this study, we use the depth data inputted from the Kinect
camera sensor.We suggest the detection and trackingmethod
for stable hand detection irrespective of the experiment
lighting conditions and color data. Further, we quantitatively
and qualitatively analyzed the results of the hand region
tracking per distance from the camera and per speed. We
evaluate the effectiveness of the system by examining the
mean hand detection speed, computing speed, and tracking
performance as well.

The rest of this paper is organized as follows: Section 2
explains the features for real-time hand detection. It also
describes the learning and recognition processes. Section 3
explains the tracking process introducing Depth-based
Adaptive Mean Shift (DAM-Shift) algorithm. DAM-Shift
algorithm refers to the hand’s center point acquired from
the previous step when it begins its operation in the cur-
rent frame. Section 4 describes a testing environment and
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end
Output:

The feature value array Fv.

Algorithm 1: Proposed algorithm for feature extraction.

the experimental results to prove the effectiveness of the
proposed algorithm. Lastly, in Section 5, we present the
conclusions and a suggestion.

2. Hand Detection

2.1. Dynamic Depth-BasedDifference Feature. Thepurpose of
features is to ease the fast and accurate detection of the hand
region in a depth image [15]. We use very simple features
and let the boosting and cascade method learn how to detect
a hand region using the features. AdaBoost is popular for
object detection, especially face detection. Viola and Jones
[16] used the Haar-like features to detect a face and achieved
good results because a face has certain distinct characteristics.
However, a handdoes not contain distinct characteristics, and
a depth image would have only the shape information. The
use of shape information requires a segmentation of an object,
which is a very complex process. We suggest simple though
very effective features to detect multiple hand regions.

Algorithm 1 shows the proposed algorithm for feature
extraction.When an image segment 𝐼 and control parameters
𝑁
𝑥
and𝑁

𝑦
are inputted, 𝐼 is divided into blocks whose width

and height are block
𝑤
and block

ℎ
, respectively. step

𝑥
and

step
𝑦
denote the amount displacement of included blocks

along an 𝑥-axis and 𝑦-axis, respectively. End
𝑥
and End

𝑦

represent the number of blocks along a horizontal and vertical
direction. The total number of included blocks becomes
End
𝑥
× End

𝑦
.

Figure 2 illustrates how features are extracted with an
example where 𝑁

𝑥
= 2 and 𝑁

𝑦
= 2. The inside quadrangles

represent included blocks. Since 𝑁
𝑥

= 2 and 𝑁
𝑦

= 2,
the number of included blocks is End

𝑥
× End

𝑦
= 9. A

feature value is computed at each block. An average depth
value of each block is subtracted from the central depth
value at the position of the center dot, and the resulting
value is used as the feature. The features would be used for

Figure 2: Example of extracting features.

learning the classifier. To find the best features, the learning
process examines goodness of features varying the control
parameters;𝑁

𝑥
= {1, . . . , 𝑛},𝑁

𝑦
= {1, . . . , 𝑚}.

The function area of Algorithm 1 returns the sum of
depth values in the rectangle roi, which requires a substantial
amount of computing time. We effectively resolve this prob-
lem using an integral image [16]. The average depth of roi
is subtracted from the central depth value Depth

𝑐
, and the

resulting value is stored in an array Fv as a feature value.

2.2. Learning and Classification. The computing time for the
feature values can be reduced using an integral image. A
cascademethod can further reduce the computing volume for
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Figure 3: Example of feature extraction.

positive and negative decisions, enabling real-time detection.
However, scale invariance is another issue to be resolved
for object detection. For example, in [16], the AdaBoost
predetermines the size of a face or it scans all the possible sizes
for face detection. We solve this problem by predicting the
size of a hand.The prediction ismade using the depth value of
the hand region. It enables detecting all sizes of hand regions
within a single scan. Even though the size of a hand differs
individually, we assume that this variance is insignificant.
Therefore, we predict the size via the 2nd polynomial model
as follows [17]:
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Equation (1) is to estimate the radius of the enclosing
circle of a hand region using the 2nd polynomial model.
The value of 𝑥 in (1) is the representative depth of a candidate
hand region in the current frame. To obtain the value 𝑟, we
need the coefficients 𝛼 = [𝛼

1
𝛼
2
𝛼
3
]. These coefficients

can be learned using (2) and (3). The values of (𝑥
𝑖
𝑟
𝑖
) are

collectedmanually at the learning phase.Wemeasure the size
of a hand region varying the depth of a hand to different
values. We have made an assumption that the size of hand
can be represented as the 2nd polynomial function of a depth.
Thus, once 𝛼 is determined through learning data, the size of
the hand region can be estimated using (1).

A learning phase needs features to be used when building
a boosting classifier. The pool of features is made with an
algorithm illustrated in Algorithm 1 by varying the control
parameters𝑁

𝑥
and𝑁

𝑦
. Figure 3 shows an example of build-

ing a pool of features. Given 𝑛 and 𝑚, features are extracted
from the given region 𝑁

𝑥
= 1, 𝑁

𝑦
= 1 until the condition

𝑁
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= 𝑛,𝑁
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The values of 𝑛 and 𝑚 are to be determined according to
the size of a hand region. For example, when the size of a hand
region is around 20 by 20, 𝑛 and 𝑚 can be set to 10. For 𝑛 =
𝑚 = 10, the total number of features becomes 10000.

When a pool of features is provided, a learning process
can operate through a boosting classifier. Most classifiers try
to increase a detection rate (number of detected positive
samples over total number of positive samples), while they try
to reduce a false positive rate (number of detected negative
samples over total number of negative samples). In general,
these two criteria contradict. The AdaBoost algorithm pro-
posed by Viola et al. determines the threshold value with
the least error rate to form a weak classifier. Then, a strong
classifier combines weak classifier so that it could meet some
desired detection rate. If the strong classifier could not meet
satisfactory false positive rate, the next stage of the cascade
structure is carried out. That is, each stage of the cascade
structure works as a strong classifier. It results in that a very
large number of weak classifiers are needed in the overall
cascade structure.

Because a hand region is rather regular and has a simple
pattern, we rather choose a weak classifier that acts like a
strong classifier of Viola. A single weak classifier is to perform
the role of a strong classifier of Viola by setting its threshold
value so that it could meet a desired detection rate. In other
words, we enforce a kind of overfitting at each weak classifier.
A satisfactory false rate is then handled in the succeeding
stages of a cascaded structure in a sequential manner. This
strategy could speed up the detection procedure and reduce
the number of weak classifiers dramatically:

𝑑
𝑟
= max(

(𝑇
+

− 𝑆
+

)

𝑇+
,
𝑆
+

𝑇+
) , (5)

𝑒
𝑟
= min (𝑆+ + (𝑇− − 𝑆−) , 𝑆− + (𝑇+ − 𝑆+)) . (6)

Equations (5) and (6) are to compute the detection rate
and error rate of a weak classifier, respectively. 𝑆+ and 𝑆

−

denote the weighted sums of positive and negative samples
below and above the threshold value, while𝑇+ and𝑇− denote
the total weighted sums of the positive and the negative
samples. That is, referring to Figure 4, 𝑆+corresponds to
the positive sample area below the threshold value and 𝑆

−

corresponds to the positive sample area above the threshold
value, while 𝑇+ corresponds to the overall positive sample
area and 𝑇−corresponds to the overall negative sample area.

Figure 4 shows the position of the threshold value where
the error rate becomes minimum while keeping the maxi-
mum detection rate for a given feature. In Figure 4(a), the
given threshold value allows the maximum detection rate as
well as the minimum error rate. In Figure 4(b), the given
threshold value gives the maximum detection rate, though it
causes a very big error rate. In practice, the threshold value
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Figure 5: Structure of classifier generated using cascade.

gets adjusted to decrease the error rate until it meets the
desired detection rate. Each stage of a cascade structure, as
in Figure 5, would be constructed as a single weak classi-
fier maintaining the desired detection rate and sequentially
reducing the false positive rate.

Figure 5 shows the cascaded structure of the proposed
classifier. The appearance of a hand region is restricted to
an open palm so that the shapes of all possible hand regions
remain similarwhile only their sizes differ. Each stage chooses
the best feature to form a classifier.The threshold value of the
chosen feature is determined in order to minimize the false
positive ratewhilemaintaining the desired detection rate.The
classifier of each stage accepts most of positive samples while
rejecting as many negative samples as possible. Therefore,
the desired detection rate is maintained even after it passes
several stages, and the false positive rate gets reduced as the
number of stages increases. For example, if we set the required
false positive rate of each stage to be 0.7, the overall false
positive rate becomes 0.000798 (0.720) after 20 stages pass.

Algorithm 2 presents a simple form of the classifier
building algorithm used in the current study. 𝐹

𝑖
denotes the

current false positive rate, and 𝐹desired and 𝐷desired represent
the desired false positive and detection rates, respectively,
which are the constants that a user selects in advance. 𝑁
denotes a set of training image segments. The algorithm
shows that, out of features that satisfy the aforementioned
threshold determination rule, a feature that satisfies 𝑑

𝑟
≥

𝐷desired and has the lowest 𝑒
𝑟
value is selected. When 𝐷desired

is near 1, 𝑒
𝑟
could be more than 0.5. In order to solve this

problem, if the value of 𝑒
𝑟
ismore than 0.5 in the next step, the

algorithm reduces𝐷desired and repeats the process of selecting
the best feature.

Once a feature is selected, the cascade classifier, a com-
bination of the selected feature and the previously selected
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Figure 6: Process of hand region detection.

features, computes 𝐹
𝑖
. A weak classifier with the selected

feature is generated, and it becomes the component of a
cascade. In the next stage, the cascade classifier organizes a
set of learning samples𝑁 only with all of the positive samples
and falsely detected negative samples and repeats the process
until 𝐹

𝑖
becomes smaller than 𝐹desired.

Figure 6 shows the process of hand region detection
using the 2nd polynomial model and the generated cascade
classifier.The detection process consists of two steps. For each
candidate pixel position of a hand region, the prelearned 2nd
polynomial model predicts the size of a hand region. Based
on the size, a rectangular region is generated with the center
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while 𝐹
𝑖
> 𝐹desired

(1) Select the best classifier satisfying 𝑑
𝑟
≥ 𝐷desired and min(𝑒

𝑟
).

(2) If 𝑒
𝑟
≥ 0.5 then decrease𝐷desired and go step (1).

(3) Evaluate current cascaded classifier and update 𝐹
𝑖
.

(4)𝑁 ← 0.
(5) Include false positive samples and positive samples in set𝑁.

Algorithm 2: Classifier algorithm.

for 𝑖 = 0, . . . , 𝑁
if 𝑅
𝑖
is not merged

TempR ←insert 𝑅
𝑖

for 𝑖 = 0, . . . , 𝑁
if 𝑖 ̸= 𝑗

if 𝑅
𝑗
is not merged

𝑀𝑅 ← mean (TempR)
if distance (𝑀𝑅, 𝑅

𝑗
) < Th

𝑑

if intersect (𝐴, 𝐵)/(𝑀𝑅
𝑤
×𝑀𝑅

ℎ
) > Th

𝑟

TempR ←insert 𝑅
𝑗

end if
end if

end if
end if

end
Result← Add the mean rectangle of TempR
TempR ← 0

end if
End

Algorithm 3: Merge algorithm.

at the candidate pixel position. If the generated region is
completely inside an image, the cascade classifier determines
whether the generated region is a hand region or not. When
multiple pixels are classified as centers of hand regions (i.e.,
multiple regions are found as hand regions), they are tested
whether they can be combined to form one hand region
through the merge operation.

Algorithm 3 shows the merge algorithm. In Algorithm 3,
distance(𝐴, 𝐵) represents the depth difference between the
center points of Quadrangle 𝐴 and Quadrangle 𝐵, and
intersect(𝐴, 𝐵) denotes the size of the overlapped area of
Quadrangle 𝐴 and Quadrangle 𝐵. Further, Th

𝑑
denotes the

threshold value of the depth difference, and Th
𝑟
represents

the threshold value of the overlapped region. In the test, we
used the values of 50 and 0.6, respectively.

TempR denotes the memory space where the data for
many quadrangles are stored. In other words, we test the
depth differences and the overlap regions between the center
points of the quadrangles, which are hand region candidates,
and any quadrangle that passes the test is added to the
memory space TempR. When another quadrangle is tested,
the depth difference and the degree of overlap with the
average quadrangle in TempR are compared for the merge
operation. The final product of the merge process is the
average quadrangle, which becomes the final hand region.

The average quadrangle is found by the average coordinate
of the vertex of each quadrangle. Furthermore, in the next
tracking stage, the center point of the average quadrangle is
set to the initial point of the tracking.

Figure 7(a) shows an image generated after all the pixels
are classified, and Figure 7(b) shows the final result obtained
by executing the merge algorithm.

3. Hand Tracking

3.1. Tracking Point Transition and Region Growth. In the
previous section, the hand region and the center point of the
hand region are detected. In the tracking process, the nearest
point in the next frame is to be detected on the basis of the
center point of the hand region in the current frame [18].
The nearest point becomes the base for the tracking using the
region growth method and the depth-based adaptive mean
shift algorithm.

Figure 8 shows an example of the tracking point tran-
sition. First, (a) shows a depth image including the center
point of the hand region found in the detection stage, and
(b) illustrates the next frame and shows the changed position
of the hand. We suggest a very simple yet effective method to
track a hand. As shown in (b), the nearest point is found from
the previous tracking point.
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Figure 7: Result of merge process.
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The term nearest point means the closest point in (𝑥, 𝑦, 𝑧)
space. In (7), TPpre

𝑡
denotes the tracking point of the previous

frame and 𝑝 represents a random point for the sake of com-
parison. Equation (8) is used for calculating the Euclidean
distance. While the distance in 𝑥- and 𝑦-axis is merely the
coordinate difference between the two points, the difference
in 𝑥-, 𝑦-, and 𝑧-axis (the depth), is calculated in (9). In (9),𝑇

𝑓

denotes a constant, which is the weighted value to the nearest
point from the camera, because the hand region lies in front of
the other body parts when, in general, one makes a gesture.
Further, 𝑇dc compensates the difference in the units of axis
𝑧 and axes 𝑥 and 𝑦. We have used the values of 𝑇

𝑓
= 50

and 𝑇dc = 4 on the basis of our experiences from previous
experiments:

TPseed
𝑡

= argmin (𝑑 (𝑝,TPpre
𝑡
)) , (7)

𝑑 (𝑎, 𝑏) = √(𝑎
𝑥
− 𝑏
𝑥
)
2

+ (𝑎
𝑦
− 𝑏
𝑦
)
2

+ 𝑧𝑑 (𝑎
𝑧
, 𝑏
𝑧
), (8)

𝑧𝑑 (𝑎, 𝑏) = (

󵄨󵄨󵄨󵄨󵄨
𝑎 − (𝑏 − 𝑇

𝑓
)
󵄨󵄨󵄨󵄨󵄨

𝑇dc
)

2

. (9)

When the nearest point TPseed
𝑡

is found from the tracking
point of the previous frame, a hand region can be inferred

using the point as a seed. We use the region growing method
to detect a hand region from the nearest point. The depth
value is fundamental in the region growing method. That is,
if the depth value is similar, the region growing can carry on.
However, the grown region could be considerably broad if
the depth value of an object changes gradually.Therefore, the
global threshold value is used to avoid this problem:

Condall =
{{

{{

{

𝑛

∑

𝑖

cond
𝑖
≥ 𝑛 True

otherwise False,
(10)

Cond
1
= {

󵄨󵄨󵄨󵄨𝐷𝑡 (𝑛,𝑚) − 𝐷𝑡−1 (𝑐, 𝑟)
󵄨󵄨󵄨󵄨 < Th

𝐷
1

otherwise 0,
(11)

Cond
2
= {

𝐷
𝑡
(𝑛,𝑚) − DepTP < ThGD 1

otherwise 0,
(12)

Cond
3
= {

Growcnt < Th
𝑐

1

otherwise 0,
(13)

Cond
4
= {

Dist < Th
𝑐

1

otherwise 0.
(14)
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Input: TPseed
𝑡

,Th
𝑑
,ThGD

Initialize: 𝐵 = 0, temp𝐵 = 0, VB = 0, UVB = 0
Th
𝑐
← 2nd polynomial model (DepTP)

𝐵 ← Add TPseed
𝑡

while 𝐵size > 0

for 𝑖 = 0 to 𝑖 < 𝐵size
𝑐 = 𝐵[𝑖]

𝑥
, 𝑟 = 𝐵[𝑖]

𝑦

for𝑚 = 𝑟 − 1 to𝑚 ≤ 𝑟 + 1

for 𝑛 = 𝑐 − 1 to 𝑛 ≤ 𝑐 + 1
if (Condall)

tmp𝐵 ← Add Point (𝑛, 𝑚)
else

if (Cond1 ̸= 1)

VB ← Add Point (𝑛,𝑚)
else

UVB ← Add Point (𝑛,𝑚)
end if

end if
end

end
end
swap(𝐵, tmp𝐵)
tmp𝐵 = 0
Growcnt = Growcnt + 1

Output: VB, UVB

Algorithm 4: Algorithm for region growth.

Equations (10)–(14) specify conditions where the region
growing would be conducted. In (11), 𝐷

𝑡
(𝑛,𝑚) denotes the

depth value of the pixel for which the region-growing test
is to be performed and 𝐷

𝑡−1
(𝑐, 𝑟) denotes the depth value of

the base pixel where the region growing was performed in
the previous iteration. That is, when compared to the depth
value of the base coordinate, if the difference of the depth
value is below the threshold Th

𝐷
, it satisfies the condition.

Equation (12) expresses the condition that limits the range of
the region growing. DepTP denotes the depth value of TP

seed
𝑡

,
so that it limits the depth value range on the basis of the global
threshold ThGD. Growcnt in (13) accumulates the amount of
region growing in order to limit the size of the region. Dist in
(14) denotes the Euclidean distance between the nearest point
TPseed
𝑡

and the pixels that is under consideration for region
growing.When all conditions, (11)–(14), are met according to
(10), the value becomes true and the corresponding pixel is
included in a hand region.

Algorithm 4 presents the region growing algorithm. The
threshold values of depth threshold Th

𝐷
and the depth

threshold of global ThGD are inputted, and the nearest point
TPseed
𝑡

is calculated using (7). DepTP means the depth value of
TPseed
𝑡

. OnceDepTP is inputted, the threshold value of Th𝑐 can
be obtained from the previously generated 2nd polynomial
model. Initially, the coordinate array 𝐵 is filled with the base
coordinate TPseed

𝑡
. We examine eight neighbors of the newly

incoming coordinates of 𝐵 to see whether the conditions
in (10) are met and include in the array 𝐵 the coordinates
of the neighbor which meets the conditions. The process of

region growing is repeated for appropriate pixels.When these
conditions Condall are not met, the failed pixels are stored in
two ways. If Cond

1
is not met, the pixels are added to the set

of valid borderlines VB, whereas the others are added to the
set of invalid borderlines UVB. The set of valid borderlines,
which is a result of region growing, is later used in the DAM-
Shift algorithm.

Figure 9 shows the result of implementing the algorithm
presented in Algorithm 4. The conditions given in (10) are
tested, and the region grows repeatedly as shown in the figure.
Th
𝑐
is evaluated to be 48, given the depth value of TPseed

𝑡
.

This implies that the selections are repeated 48 times to
complete the region growing. Figure 9(f) shows green and
yellow borderlines for the pixels that did not meet Condall.
The green line denotes a valid borderline VB, and the yellow
line represents an invalid borderline UVB.

3.2. Depth-Based Adaptive Mean Shift (DAM-Shift). In the
tracking process, the nearest point is detected from the
previous tracking point, the region is grown, and the hand
region is detected. For stable tracking, a point that meets
certain conditions needs to be tracked. Hence, we have
defined a point that converges to the center of the contour
line using theDAM-Shift algorithm as the tracking point.The
DAM-Shift is defined in a manner similar to the Mean Shift
[19], but its kernel size adaptively changes according to the
depth values and the iteration time:

TPmean
𝑖+1

=
∑
𝑝∈Ω

𝑝 ⋅ 𝐾 (𝑝,TPmean
𝑖

,DTPmean
𝑡−1

, 𝑖)

∑
𝑝∈Ω

𝐾(𝑝,TPmean
𝑖

,DTPmean
𝑡−1

, 𝑖)
, (15)
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(a) Growcnt = 1 (b) Growcnt = 10

(c) Growcnt = 20 (d) Growcnt = 30

(e) Growcnt = 40 (f) Growcnt = 48

Figure 9: Result of region growth.

𝐾(𝑝, 𝑠, 𝑑, 𝑖) = {
1

󵄩󵄩󵄩󵄩𝑝 − 𝑠
󵄩󵄩󵄩󵄩 < 𝑅 (𝑑, 𝑖)

0 otherwise,
(16)

𝑅 (𝑑, 𝑖)

= {
SPM (𝑑) 2SPM (𝑑) − 𝑖 ⋅ 𝑇rc < SPM (𝑑)

2SPM (𝑑) − 𝑖 ⋅ 𝑇rc otherwise,
(17)

SPM (𝑑) = 𝛼
1
+ 𝛼
2
𝑑 + 𝛼
3
𝑑
2

. (18)

Equation (15) shows how the DAM-Shift algorithm
works. Here, 𝐾(⋅) denotes a kernel function whose size
adaptively varies according to the depth of the tracking
point. TPmean

𝑖+1
depicts the coordinates of the tracking point

at the 𝑖 + 1 iteration. It is updated as the iteration goes on.
DTPmean
𝑡−1

represents the depth value of the tracking point of
the previous frame. 𝑝 denotes a point that belongs to the set
Ω, where Ω represents the set of valid borderlines VB that

is acquired during the region growing. The coordinates of
the nearest point TPseed

𝑡
is obtained as in Section 3.1, and it

is substituted for TPmean
0

. As the iteration goes on, TPmean
𝑖+1

is
replaced with TPmean

𝑖
for the next iteration. The process is

repeated until the point of convergence.The kernel function’s
radius 𝑅(𝑑, 𝑖) changes according to the depth value and the
number of repetition. Equation (17) is to calculate the radius
depending on depth and repetition. For this purpose, the
function SPM(𝑑) is used, which corresponds to the 2nd
polynomial model defined in Section 2.2. Beginning with the
double size of SPM(𝑑), the radius keeps on decreasing as the
iteration goes on. But, to avoid an infinite decreasing, the base
radius SPM(𝑑) is used if the considered radius is smaller than
the base value. We have defined the radius-reducing constant
𝑇rc on the basis of our empirical knowledge.

An image of the hand region with the five fingers open is
acquired from various distances, and the center point of the
palm is determined manually. The distance from the center
point to the farthest middle finger and the depth value of
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#0
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#0

p ∈ Ψ

Ψ

Figure 10: Decision process for tracking point.

the central palm are collected. The depth value is assigned to
𝑥 in (3), where 𝑟 is set to be the distance from the center point
to the farthest middle finger. Then, (2) is used for calculating
the values of 𝛼

1
, 𝛼
2
, and 𝛼

3
to be used in (18).

Figure 10 shows the process of determining the tracking
point through the DAM-Shift algorithm. The DAM-Shift
does not guarantee a smooth tracking. The converged point
may not fall in the hand region Ψ, though it rarely happens.
It is because only border pixels are involved in the process
of determining a tracking point. To fix this problem, we use a
stack that keeps the history of convergence of a tracking point.
In Figure 10, the left figure shows the result after the DAM-
Shift algorithm is executed through the kernel function.
Number 0 denotes the initial point, and its depth value is
assigned to the kernel function to get the next point number 1.
Suppose the final converged point number 3 is located outside
the hand region (number 3 ∉ Ψ). It may lead to an error
when determining a tracking point in the next frame. As
shown in the right figure of Figure 10, we store the resulting
coordinate of each run of the DAM-Shift algorithm in the
stack-structured memory. Once the DAM-Shift algorithm
converges, a pop operation is executed. The top coordinate
of the stack is checked to see whether it is inside the hand
region or not. The first successful coordinate becomes the
final tracking point.

3.3. Detection of Inappropriate Tracking. While tracking,
many unexpected things may happen. A user may want
to finish a hand movement or a hand may touch other
objects. To handle situations where tacking is impossible
or unnecessary, we need to judge the success or failure of
tracking, whenever the region growing is completed. After
many experiments, we have found that the tracking point
moves inappropriately when a hand moves very swiftly,
or hand is positioned behind the face or overlapped with
another object. Hence, we include a module that detects such
invalid tracking cases.

As shown in Figure 11(a) through Figure 11(c), the invalid
borderline (the yellow one) is, in general, very short when the
hand region is normally detected. In contrast, when the hand

region overlaps with another region as shown in Figures 11(d)
and 11(e) and when the hand region detection moves to the
face region after its failure as shown in Figure 11(f), the length
of invalid borderlines is considerably longer than that of the
invalid borderlines of a normal hand region. Therefore, this
observation is used for judging whether the hand region is
being tracked normally.

Equation (19) computes a reliable threshold value using
a formula to calculate the circumference. Th

𝑐
denotes the

threshold value used in (13) and (14), and it changes adap-
tively according to the depth value of the nearest point. A
value of 0.35 is determined empirically. If the number of pixels
in the invalid borderline is less than Thconfidence, the tracking
is considered successful, while the opposite is considered
a failure. During region growing, borderline detection is
performed and simultaneously a test is made to judge the
success or failure of the tracking by finding the valid and
invalid borderlines:

Thconfidence = 2𝜋 × Th
𝑐
× 0.35. (19)

4. Experimental Results

We used depth images of 320 ∗ 240 created by Microsoft
Kinect as an input device. The above mentioned algorithms,
hand region detection and a tracking, are tested with Intel(R)
Core(TM) Quad CPU 2.66GHz and 3-GB memory.

Figure 12 shows 50 features that were selected during the
learning, out of 10,000 possible features. The number at the
bottom of each image is the threshold value of the feature,
and the green quadrangle represents Parity = 1, whereas the
red quadrangle denotes Parity = −1. Parity = 1 implies that the
difference between the depth of center and the average depth
of quadrangle region is smaller than the given threshold,
while Parity = −1 implies the reverse way. That is, the green
quadrangle region is farther away from a camera than the
central pixel. Most of the red quadrangles are located within
the hand region, which implies that the difference between
the center and the average quadrangle region is larger than the
threshold. In the case of number 10 shown in Figure 12, the
red quadrangle is located outside a hand region, but it works
for detection because of the small threshold value, −6231.1.
Further, the collection of 50 features looks similar to the shape
of a hand; hence, the purpose of feature selection is intuitively
understood.

Table 1 summarizes experimental results, comparing our
method against Discrete AdaBoost, Real AdaBoost, and
Gentle AdaBoost [20]. The tests have been carried out using
the same data set to all the methods. Discrete AdaBoost,
Real AdaBoost, and Gentle AdaBoost methods require the
maximum allowable false positive rate as an input parameter
for each stage when they build a classifier. It is set to vary
from 0.7 to 0. On the other hand, our method does not
need the range of false positive rates to complete each stage.
DR denotes the detection rate, and FDR refers to the false
discovery rate. Computation denotes a computing time (ms)
until a detection process is completed for each frame.

In general, our method surpasses the other boosting
methods in every criterion. Gentle AdaBoost exhibits the best
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(a) (b)

(c) (d)

(e) (f)

Figure 11: Results of region growing and boundary detection.

result where the stage-allowedMFPR is set to zero. As shown
in the table, the detection rate in this case is 0.98, and the false
discovery rate is 0.01. However, the detection speed is twenty
times slower than that of our method. This was attributed
to the fact that the stage has to have all the possible weak
classifiers since MFPR was set to zero. The increase in the
number of weak classifiers results in the decrease in the speed.
Our method does not select any incorrect hand image at a
detection rate of 97% and has the fastest computation speed
compared to other algorithms. This is because our classifier
contains only 50 features and forms a cascading structure.

Figure 13 shows the classifier’s computational perfor-
mances. (a) shows the original image, (b) shows the result
of a combination of Real AdaBoost and Cascade [20], and
(c) shows the result of the proposed method. For the black
regions in (b) and (c), a classification is not performed
because they did not meet the region test conditions illus-
trated in Figure 6.The white pixels represent positions which
are classified as hand region positions. The pixel values of
the remaining region imply the number of classifier where

they are evaluated during the classification process. In other
words, the darker pixels are claimed as nonhand region
position within a fewer number of classifier. As seen in the
images, the white pixel positions illustrated in (c) show the
presence of a hand region more accurately than in (b), and
the remaining pixels in (c) are considerably darker than those
in (b). Therefore, the proposed method is better in terms of
speed and accuracy.

Figure 14 shows depth images with detected hand regions
in quadrangles. The green quadrangles are the ones obtained
after the detected quadrangles are merged. Most of the hand
regions are accurately extracted. The hand regions used in
a learning phase are front-faced open palms. Because the
features refer to the difference between the depth of center
and the average depth of a region, rather than the details of
the hand figure, slightly deformed hand regions are extracted.
This could be improved by an addition of more positive
samples. Many tests prove that the FDR is considerably low.

Table 2 presents the measured values of the tracking
accuracy of the hand region. As shown in Figure 15, while
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Figure 12: Fifty selected features.
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(a) Original image (b) RAB (MFPR = 0.3)

(c) Proposed method

Figure 13: Computational performances.

Figure 14: Detection results.

a hand draws “a,” “b,” and a spiral, the trajectory of its
movement is stored, and the average error of the trajectory
is evaluated by changing the distances from a camera. The
error is calculated in differences of pixel positions between
ground truth points and the tracking points. Ten tests are
performed, and their results are averaged. The closer a hand
is, the greater the error occurs because a closer hand gives
more displacement and its hand region is bigger even at the
same speed than a far way hand. However, most of the results
are within 5 pixels, indicating a good performance.

Figure 15 shows the tracking data of Table 2 and the
trajectory of the hand region tracking. The green point
denotes the tracking point where the green line is a sequence
of tracking points. The number on the upper left of each
image is the frame number.The first row of the images shows
a drawing of “a,” the second row illustrates a drawing of “b,”
and the last row shows a drawing of a spiral. Each drawing is
completed in 1.5 sec.

Figure 16 shows the 2Dpictures of tracking paths of letters
“a” and “b” after a hand region is detected from a distance of
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Figure 15: Tracking results.

Table 1: Comparison of detection rate and false positive rate of various AdaBoost algorithms.

MFPR (maximum acceptable false positive rate)
0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

Discrete AdaBoost
DR 0.96 0.99 0.98 0.99 1 0.97 0.99 0.96
FDR 0.72 0.73 0.74 0.87 0.71 0.85 0.56 0.13
Computation (ms) 25.76 20.13 19.82 23.70 32.60 36.18 39.63 123.56

Real AdaBoost
DR 0.98 0.99 0.97 0.96 0.99 0.99 1 0.94
FDR 0.47 0.39 0.27 0.45 0.18 0.26 0.20 0.01
Computation (ms) 15.63 15.77 15.42 16.85 17.33 21.36 24.18 82.83

Gentle AdaBoost
DR 0.96 0.99 0.97 0.97 0.97 0.97 0.98 0.98
FDR 0.46 0.49 0.40 0.33 0.59 0.37 0.24 0.01
Computation (ms) 16.22 18.28 20.62 18.84 18.71 18.39 26.53 86.15

Proposed method
DR 0.97
FDR 0
Computation (ms) 4.19

Table 2: Average error of tracking with various distance conditions
(UNIT: pixels).

1m 1.5m 2m
“a” 5.7883 4.2890 2.1928
“b” 4.3927 3.9835 2.3920
Spiral 4.6908 3.2395 2.9803

1.2m from a camera. (a) and (d) on the left show slow speed,
whereas (b) and (e) in themiddle illustrate normal speed, and
(c) and (f) on the right show the fast speed. The red paths
are ones obtained by using the proposed method, and the
green paths represent the ground truth of the center points
of the hand obtained manually. In most cases, the tracked

paths shown in the figures are free of errors with respect to
the ground truth.

Table 3 presents the average tracking errors compared
with those of the ground truth after ten gestures of “a” and
“b” at each speed from 1.2m distance. Most of the gestures
have errors of less than five pixels. In the case of “a,” at a fast
speed, more errors occurred as compared to in the case of
the other gestures. It is because the last stroke of a letter “a”
is completed considerably fast due to the feature of the letter.
Hence, the depth image of the hand region becomes blurred,
which results in an inaccurate tracking of the center point of
a hand.

Figure 17 shows results of invalid tracking that occurs
during judging an inappropriate tracking explained in
Section 3.3. The white regions denote hand regions that are
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Figure 16: Tracking results of gestures “a” and “b” under various velocity conditions.
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(a) (b) (c)

Figure 17: Example of tracking confidence.

Table 3: Average error of tracking with various velocity conditions
(UNIT: pixels).

Slow Normal Fast
“a” 3.7559 4.1664 8.1443
“b” 2.3446 3.4423 3.3796

Table 4: Computing time (Unit: ms).

Detection stage Tracking stage
Computing time 5.85 25.96

normally tracked, while blue regions represent hand regions
that do not pass the reliability test and are hence considered
to be failed hand regions. In (a), a hand region could not pass
the reliability test as a hand is close to a wall. In (b), a hand
touches a face and is then detached from it. Further, in (c),
a right hand touches a neighbor object and is then detached
from it. We have let the tracking continue for a certain length
of time even though the region does not pass the reliability
test.Thus, any tracking that becomes normal within a certain
time limit is allowed to continue. Hence, all the images at the
bottom of the figure show normal tracking.

Table 4 shows average computing times for the detection
and tracking processes. In the case of an irregular gesture,
we have let the detection and tracking processes run ten
times for 3min. The average computing times are evaluated.
In the detection stage, the 2nd polynomial model detects
a hand region in a single scan when the pixels are fed.
Its computing speed is excellent. The tracking stage for

the nearest point detection, the region growing, and the
DAM-Shift is considerably fast because of a low computing
volume.

5. Conclusions

We have proposed the hand detection and tracking method
that works very well in a real world environment. For hand
detection, we have developed very effective features and the
cascade structure of a classifier. The features are generated
based on dynamic depth differences.The cascade structure is
constructed with selective employment of features according
to their discriminating powerwith the strategy ofminimizing
a false positive rate at each stage.

For tracking a hand, we have developed DAM-Shift
algorithm which is a variant of CAM-Shift algorithm. DAM-
Shift algorithm varies its search area according to the depth of
a hand. Our 2nd polynomial model works well to predict the
size of a hand, which plays an important role in confining a
search area. To handle situations where tacking is impossible
or unnecessary, we have developed the judgment module
which detects an inappropriate tracking.The judgment mod-
ule can decide whether current tracking is valid or not.

We have evaluated the proposed hand detection and
tracking algorithm by comparing it against the existing
AdaBoost algorithms qualitatively and quantitatively. We
have analyzed the tracking accuracy through performance
tests in various situations. Current study shows that the
proposed methods surpass the existing other methods in
terms of accuracy and computation time.
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