1,533 research outputs found
Linking vegetation change, carbon sequestration and biodiversity
1. Despite recent interest in linkages between above- and belowground communities and their consequences for ecosystem processes, much remains unknown about their responses to long-term ecosystem change. We synthesize multiple lines of evidence from a long-term ‘natural experiment’ to illustrate how ecosystem retrogression (the decline in ecosystem processes due to long-term absence of major disturbance) drives vegetation change, and thus aboveground and belowground carbon (C) sequestration, and communities of consumer biota.
2. Our study system involves 30 islands in Swedish boreal forest that form a 5000 year fire-driven retrogressive chronosequence. Here, retrogression leads to lower plant productivity and slower decomposition, and a community shift from plants with traits associated with resource acquisition to those linked with resource conservation.
3. We present consistent evidence that aboveground ecosystem C sequestration declines, while belowground and total C storage increases linearly for at least 5000 years following fire absence. This increase is driven primarily by changes in vegetation characteristics, impairment of decomposer organisms and absence of humus combustion.
4. Data from contrasting trophic groups show that during retrogression, biomass or abundance of plants and decomposer biota decreases, while that of aboveground invertebrates and birds increases, due to different organisms accessing resources via distinct energy channels. Meanwhile, diversity measures of vascular plants and aboveground (but not belowground) consumers respond positively to retrogression.
5. We show that taxonomic richness of plants and aboveground consumers are positively correlated with total ecosystem C storage, suggesting that conserving old growth forests simultaneously maximizes biodiversity and C sequestration. However, we find little observational or experimental evidence that plant diversity is a major driver of ecosystem C storage on the islands relative to other biotic and abiotic factors.
6. Synthesis. Our study reveals that across contrasting islands differing in exposure to a key extrinsic driver (historical disturbance regime and resulting retrogression), there are coordinated responses of soil fertility, vegetation, consumer communities, and ecosystem C sequestration, which all feed back to one another. It also highlights the value of well replicated natural experiments for tackling questions about aboveground-belowground linkages over temporal and spatial scales that are otherwise unachievable
Diagnostic PCR assays to unravel food web interactions in cereal crops with focus on biological control of aphids
Successful biological control of agricultural pests is dependent on a thorough understanding of the underlying trophic interactions between predators and prey. Studying trophic interactions can be challenging, particularly when generalist predators that frequently use multiple prey and interact with both pest and alternative prey are considered. In this context, diagnostic PCR proved to be a suitable approach, however at present, prey-specific PCR primers necessary for assessing such interactions across trophic levels are missing. Here we present a new set of 45 primers designed to target a wide range of invertebrate taxa common to temperate cereal crops: cereal aphids, their natural enemies such as carabid beetles, ladybeetles, lacewings, and spiders, and potential alternative prey groups (earthworms, springtails, and dipterans). These primers were combined in three 'ready to use' multiplex PCR assays for quick and cost-effective analyses of large numbers of predator samples. The assays were tested on 560 carabids collected in barley fields in Sweden. Results from this screening suggest that aphids constitute a major food source for carabids in cereal crops (overall DNA detection rate: 51 %), whereas alternative extraguild and intraguild prey appear to be less frequently preyed upon when aphids are present (11 % for springtails and 12 % for earthworms; 1 % for spiders and 4 % for carabids). In summary, the newly developed molecular assays proved reliable and effective in assessing previously cryptic predator-prey trophic interactions, specifically with focus on biological control of aphids. The diagnostic PCR assays will be applicable manifold as the targeted invertebrates are common to many agricultural systems of the temperate region
Visual Servoing for Floppy Robots Using LWPR
We have combined inverse kinematics learned by LWPR with visual servoing to correct for inaccuracies in a low cost robotic arm. By low cost we mean weak inaccurate servos and no available joint-feedback. We show that from the trained LWPR model the Jacobian can be estimated. The Jacobian maps wanted changes in position to corresponding changes in control signals. Estimating the Jacobian for the first iteration of visual servoing is straightforward and we propose an approximative updating scheme for the following iterations when the Jacobian can not be estimated exactly. This results in a sufficient accuracy to be used in a shape sorting puzzle.
Tessellations and Pattern Formation in Plant Growth and Development
The shoot apical meristem (SAM) is a dome-shaped collection of cells at the
apex of growing plants from which all above-ground tissue ultimately derives.
In Arabidopsis thaliana (thale cress), a small flowering weed of the
Brassicaceae family (related to mustard and cabbage), the SAM typically
contains some three to five hundred cells that range from five to ten microns
in diameter. These cells are organized into several distinct zones that
maintain their topological and functional relationships throughout the life of
the plant. As the plant grows, organs (primordia) form on its surface flanks in
a phyllotactic pattern that develop into new shoots, leaves, and flowers.
Cross-sections through the meristem reveal a pattern of polygonal tessellation
that is suggestive of Voronoi diagrams derived from the centroids of cellular
nuclei. In this chapter we explore some of the properties of these patterns
within the meristem and explore the applicability of simple, standard
mathematical models of their geometry.Comment: Originally presented at: "The World is a Jigsaw: Tessellations in the
Sciences," Lorentz Center, Leiden, The Netherlands, March 200
Resilience of ecosystem processes: a new approach shows that functional redundancy of biological control services is reduced by landscape simplification
Functional redundancy can increase the resilience of ecosystem processes by providing insurance against species loss and the effects of abundance fluctuations. However, due to the difficulty of assessing individual species' contributions and the lack of a metric allowing for a quantification of redundancy within communities, few attempts have been made to estimate redundancy for individual ecosystem processes. We present a new method linking interaction metrics with metabolic theory that allows for a quantification of redundancy at the level of ecosystem processes. Using this approach, redundancy in the predation on aphids and other prey by natural enemies across a landscape heterogeneity gradient was estimated. Functional redundancy of predators was high in heterogeneous landscapes, low in homogeneous landscapes and scaled with predator specialisation. Our approach allows quantifying functional redundancy within communities and can be used to assess the role of functional redundancy across a wide variety of ecosystem processes and environmental factors
A rapid and efficient method for studies of virus interaction at the host cell surface using enteroviruses and real-time PCR
<p>Abstract</p> <p>Background</p> <p>Measuring virus attachment to host cells is of great importance when trying to identify novel receptors. The presence of a usable receptor is a major determinant of viral host range and cell tropism. Furthermore, identification of appropriate receptors is central for the understanding of viral pathogenesis and gives possibilities to develop antiviral drugs. Attachment is presently measured using radiolabeled and subsequently gradient purified viruses. Traditional methods are expensive and time-consuming and not all viruses are stable during a purification procedure; hence there is room for improvement. Real-time PCR (RT-PCR) has become the standard method to detect and quantify virus infections, including enteroviruses, in clinical samples. For instance, primers directed to the highly conserved 5' untranslated region (5'UTR) of the enterovirus genome enable detection of a wide spectrum of enteroviruses. Here, we evaluate the capacity of the RT-PCR technology to study enterovirus host cell interactions at the cell surface and compare this novel implementation with an established assay using radiolabeled viruses.</p> <p>Results</p> <p>Both purified and crude viral extracts of CVB5 generated comparable results in attachment studies when analyzed with RT-PCR. In addition, receptor binding studies regarding viruses with coxsackie- and adenovirus receptor (CAR) and/or decay accelerating factor (DAF) affinity, further demonstrated the possibility to use RT-PCR to measure virus attachment to host cells. Furthermore, the RT-PCR technology and crude viral extracts was used to study attachment with low multiplicity of infection (0.05 × 10<sup>-4</sup>TCID<sub>50</sub>/cell) and low cell numbers (250), which implies the range of potential implementations of the presented technique.</p> <p>Conclusion</p> <p>We have implemented the well-established RT-PCR technique to measure viral attachment to host cells with high accuracy and reproducibility, at low cost and with less effort than traditional methods. Furthermore, replacing traditional methods with RT-PCR offers the opportunity to use crude virus containing extracts to investigate attachment, which could be considered as a step towards viral attachment studies in a more natural state.</p
Cytolytic replication of echoviruses in colon cancer cell lines
<p>Abstract</p> <p>Background</p> <p>Colorectal cancer is one of the most common cancers in the world, killing nearly 50% of patients afflicted. Though progress is being made within surgery and other complementary treatments, there is still need for new and more effective treatments. Oncolytic virotherapy, meaning that a cancer is cured by viral infection, is a promising field for finding new and improved treatments. We have investigated the oncolytic potential of several low-pathogenic echoviruses with rare clinical occurrence. Echoviruses are members of the enterovirus genus within the family <it>Picornaviridae</it>.</p> <p>Methods</p> <p>Six colon cancer cell lines (CaCo-2, HT29, LoVo, SW480, SW620 and T84) were infected by the human enterovirus B species echovirus 12, 15, 17, 26 and 29, and cytopathic effects as well as viral replication efficacy were investigated. Infectivity was also tested in spheroids grown from HT29 cells.</p> <p>Results</p> <p>Echovirus 12, 17, 26 and 29 replicated efficiently in almost all cell lines and were considered highly cytolytic. The infectivity of these four viruses was further evaluated in artificial tumors (spheroids), where it was found that echovirus 12, 17 and 26 easily infected the spheroids.</p> <p>Conclusions</p> <p>We have found that echovirus 12, 17 and 26 have potential as oncolytic agents against colon cancer, by comparing the cytolytic capacity of five low-pathogenic echoviruses in six colon cancer cell lines and in artificial tumors.</p
Evolution of the vertical profile and flux of large sea-salt particles in a coastal zone
Journal of Geophysical Research, Vol. 106, No. D11, pp. 12,039 - 12,053, June 16, 2001.In the vicinity of the North Carolina Outer Banks we observed both steady
onshore flow conditions and a continental air mass transition into a marine boundary
layer. Using the CIRPAS Twin Otter aircraft, we measuredc hangesin the columnb urden
of sea salt as the air mass was advected out to sea. We also measured the flux of
whitecap-generatesde a-saltp articlesi n neutrallys tablea tmospherea t wind speedso f 4, 8,
and1 2r n s- •. Productioonf saltp articleass s malla s0 .27/•mi n diametewr aso bserved.
Furthermore,w e measureds alt particle size distributionsa t variousw ind speedsd uring
alongs horew ind and near steadys tate conditionsU. sing thesem easurementsa s a frame
of reference,w e discussth e very large differencesi n the reported size and flux of sea salt
presentedi n the literature. The disagreemenitn reported salt fluxesi s larger for smallersizedp
articles( almosta n order of magnitude)a nd is most likely due to assumptionms ade
when the fluxesw ere computed,e speciallyt he particle dry depositionv elocitya nd air mass
history.H owever,f or giant salt particlesw ith short atmosphericli fetimes (>-10/•m in
diameter),t here is generala greementb etweenf luxesa nd size distributionsm easuredi n
this studya nd previouso nes.R eported salt particle size distributionsin the literature also
vary considerablyu nder similar steadyw ind and stability conditions.F rom these and our
results it is clear that no more than half of the variance in salt particle concentration can
be explainedb y wind speeda lone, suggestingth at the idea of "steadys tate" in the marine
boundary layer rarely exists at midlatitudes
Evaluating Southern Ocean biological production in two ocean biogeochemical models on daily to seasonal timescales using satellite chlorophyll and O2 / Ar observations
© The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 12 (2015): 681-695, doi:10.5194/bg-12-681-2015.We assess the ability of ocean biogeochemical models to represent seasonal structures in biomass and net community production (NCP) in the Southern Ocean. Two models are compared to observations on daily to seasonal timescales in four different sections of the region. We use daily satellite fields of chlorophyll (Chl) as a proxy for biomass and in situ observations of O2 and Ar supersaturation (ΔO2 / Ar) to estimate NCP. ΔO2 / Ar is converted to the flux of biologically generated O2 from sea to air (O2 bioflux). All data are aggregated to a climatological year with a daily resolution. To account for potential regional differences within the Southern Ocean, we conduct separate analyses of sections south of South Africa, around the Drake Passage, south of Australia, and south of New Zealand.
We find that the models simulate the upper range of Chl concentrations well, underestimate spring levels significantly, and show differences in skill between early and late parts of the growing season. While there is a great deal of scatter in the bioflux observations in general, the four sectors each have distinct patterns that the models pick up. Neither model exhibits a significant distinction between the Australian and New Zealand sectors and between the Drake Passage and African sectors. South of 60° S, the models fail to predict the observed extent of biological O2 undersaturation. We suggest that this shortcoming may be due either to problems with the ecosystem dynamics or problems with the vertical transport of oxygen.This work was supported in part by funding
from the National Aeronautic and Space Administration (NASA
NNX08AF12G) and the National Science Foundation (NSF
OPP-0823101)
- …