14 research outputs found

    Training augmentation using additive sensory noise in a lunar rover navigation task

    Get PDF
    BackgroundThe uncertain environments of future space missions means that astronauts will need to acquire new skills rapidly; thus, a non-invasive method to enhance learning of complex tasks is desirable. Stochastic resonance (SR) is a phenomenon where adding noise improves the throughput of a weak signal. SR has been shown to improve perception and cognitive performance in certain individuals. However, the learning of operational tasks and behavioral health effects of repeated noise exposure aimed to elicit SR are unknown.ObjectiveWe evaluated the long-term impacts and acceptability of repeated auditory white noise (AWN) and/or noisy galvanic vestibular stimulation (nGVS) on operational learning and behavioral health.MethodsSubjects (n = 24) participated in a time longitudinal experiment to access learning and behavioral health. Subjects were assigned to one of our four treatments: sham, AWN (55 dB SPL), nGVS (0.5 mA), and their combination to create a multi-modal SR (MMSR) condition. To assess the effects of additive noise on learning, these treatments were administered continuously during a lunar rover simulation in virtual reality. To assess behavioral health, subjects completed daily, subjective questionnaires related to their mood, sleep, stress, and their perceived acceptance of noise stimulation.ResultsWe found that subjects learned the lunar rover task over time, as shown by significantly lower power required for the rover to complete traverses (p < 0.005) and increased object identification accuracy in the environment (p = 0.05), but this was not influenced by additive SR noise (p = 0.58). We found no influence of noise on mood or stress following stimulation (p > 0.09). We found marginally significant longitudinal effects of noise on behavioral health (p = 0.06) as measured by strain and sleep. We found slight differences in stimulation acceptability between treatment groups, and notably nGVS was found to be more distracting than sham (p = 0.006).ConclusionOur results suggest that repeatedly administering sensory noise does not improve long-term operational learning performance or affect behavioral health. We also find that repetitive noise administration is acceptable in this context. While additive noise does not improve performance in this paradigm, if it were used for other contexts, it appears acceptable without negative longitudinal effects

    Training augmentation using additive sensory noise in a lunar rover navigation task

    Get PDF
    Background The uncertain environments of future space missions means that astronauts will need to acquire new skills rapidly; thus, a non-invasive method to enhance learning of complex tasks is desirable. Stochastic resonance (SR) is a phenomenon where adding noise improves the throughput of a weak signal. SR has been shown to improve perception and cognitive performance in certain individuals. However, the learning of operational tasks and behavioral health effects of repeated noise exposure aimed to elicit SR are unknown. Objective We evaluated the long-term impacts and acceptability of repeated auditory white noise (AWN) and/or noisy galvanic vestibular stimulation (nGVS) on operational learning and behavioral health.MethodsSubjects (n = 24) participated in a time longitudinal experiment to access learning and behavioral health. Subjects were assigned to one of our four treatments: sham, AWN (55 dB SPL), nGVS (0.5 mA), and their combination to create a multi-modal SR (MMSR) condition. To assess the effects of additive noise on learning, these treatments were administered continuously during a lunar rover simulation in virtual reality. To assess behavioral health, subjects completed daily, subjective questionnaires related to their mood, sleep, stress, and their perceived acceptance of noise stimulation. Results We found that subjects learned the lunar rover task over time, as shown by significantly lower power required for the rover to complete traverses (p 0.09). We found marginally significant longitudinal effects of noise on behavioral health (p = 0.06) as measured by strain and sleep. We found slight differences in stimulation acceptability between treatment groups, and notably nGVS was found to be more distracting than sham (p = 0.006). Conclusion Our results suggest that repeatedly administering sensory noise does not improve long-term operational learning performance or affect behavioral health. We also find that repetitive noise administration is acceptable in this context. While additive noise does not improve performance in this paradigm, if it were used for other contexts, it appears acceptable without negative longitudinal effects

    Forage fish interactions: A symposium on creating the tools for ecosystem-based management of marine resources

    Get PDF
    Forage fish (FF) have a unique position within marine foodwebs and the development of sustainable harvest strategies for FF will be a critical step in advancing and implementing the broader, ecosystem-based management of marine systems. In all, 70 scientists from 16 nations gathered for a symposium on 12–14 November 2012 that was designed to address three key questions regarding the effective management of FF and their ecosystems: (i) how do environmental factors and predator–prey interactions drive the productivity and distribution of FF stocks across ecosystems worldwide, (ii) what are the economic and ecological costs and benefits of different FF management strategies, and (iii) do commonalities exist across ecosystems in terms of the effective management of FF exploitation

    A Hierarchical Bayesian approach to multi-state mark-recapture : simulations and applications

    No full text
    1. Mark–recapture models are valuable for assessing diverse demographic and behavioural parameters, yet the precision of traditional estimates is often constrained by sparse empirical data. Bayesian inference explicitly recognizes estimation uncertainty, and hierarchical Bayes has proven particularly useful for dealing with sparseness by combining information across data sets. 2. We developed a general hierarchical Bayesian multi-state mark–recapture model, tested its performance on simulated data sets and applied it to real ecological data on stopovers by migratory birds. 3. Our hierarchical model performed well in terms of both precision and accuracy of parameters when tested with simulated data of varying quality (sample size, capture and survivorship probabilities). It also provided more precise and accurate parameter estimates than a non-hierarchical model when data were sparse. 4. A specific version of the model, designed for estimation of daily transience and departure of migratory birds at a mid-route stopover, was applied to 11 years of autumn migration data from Atlantic Canada. Hierarchical estimates of departure and transience were more precise than those derived from parallel non-hierarchical and frequentist methods, and indicated that inter-annual variability in parameters suggested by these other methods was largely due to sampling error. 5. Synthesis and applications. Estimates of demographic parameters, often derived from mark–recapture studies, provide the basis for evaluating the status of species at risk, for developing conservation and management strategies and for evaluating the results of current protocols. The hierarchical Bayesian multi-state mark–recapture model presented here permits partitioning of complex parameter variation across space or time, and the simultaneous analysis of multiple data sets results in a marked increase in the precision of estimates derived from sparse capture data. Its structural flexibility should make it a valuable tool for conservation ecologists and wildlife managers.11 page(s
    corecore