2,056 research outputs found

    Further Constraints on Thermal Quiescent X-ray Emission from SAX J1808.4-3658

    Full text link
    We observed SAX J1808.4-3658 (1808), the first accreting millisecond pulsar, in deep quiescence with XMM-Newton and (near-simultaneously) Gemini-South. The X-ray spectrum of 1808 is similar to that observed in quiescence in 2001 and 2006, describable by an absorbed power-law with photon index 1.74+-0.11 and unabsorbed X-ray luminosity L_X=7.9+-0.7*10^{31} ergs/s, for N_H=1.3*10^{21} cm^{-2}. Fitting all the quiescent XMM-Newton X-ray spectra with a power-law, we constrain any thermally emitting neutron star with a hydrogen atmosphere to have a temperature less than 30 eV and L_{NS}(0.01-10 keV)<6.2*10^{30} ergs/s. A thermal plasma model also gives an acceptable fit to the continuum. Adding a neutron star component to the plasma model produces less stringent constraints on the neutron star; a temperature of 36^{+4}_{-8} eV and L_{NS}(0.01-10 keV)=1.3^{+0.6}_{-0.8}*10^{31} ergs/s. In the framework of the current theory of neutron star heating and cooling, the constraints on the thermal luminosity of 1808 and 1H 1905+000 require strongly enhanced cooling in the cores of these neutron stars. We compile data from the literature on the mass transfer rates and quiescent thermal flux of the largest possible sample of transient neutron star LMXBs. We identify a thermal component in the quiescent spectrum of the accreting millisecond pulsar IGR J00291+5934, which is consistent with the standard cooling model. The contrast between the cooling rates of IGR J00291+5934 and 1808 suggests that 1808 may have a significantly larger mass. This can be interpreted as arising from differences in the binary evolution history or initial neutron star mass in these otherwise similar systems.Comment: ApJ in press, 7 pages, 2 color figure

    Radio sources in the Chandra Galactic Bulge Survey

    Get PDF
    We discuss radio sources in the Chandra Galactic Bulge Survey region. By cross-matching the X-ray sources in this field with the NRAO VLA Sky Survey archival data, we find 12 candidate matches. We present a classification scheme for radio/X-ray matches in surveys taken in or near the Galactic plane, taking into account other multiwavelength data. We show that none of the matches found here is likely to be due to coronal activity from normal stars because the radio to X-ray flux ratios are systematically too high. We show that one of the source could be a radio pulsar, and that one could be a planetary nebula, but that the bulk of the sources are likely to be background active galactic nuclei (AGN), with many confirmed through a variety of approaches. Several of the AGN are bright enough in the near-infrared (and presumably in the optical) to use as probes of the interstellar medium in the inner Galaxy

    A variable 0.58-2.44 Hz quasi-periodic oscillation in the eclipsing and dipping low-mass X-ray binary EXO 0748-676

    Get PDF
    We report the discovery of a quasi-periodic oscillation (QPO) in data obtained with the Rossi X-ray Timing Explorer of the dipping and eclipsing low-mass X-ray binary EXO 0748-676. The QPO had a frequency between 0.58 and 2.44 Hz changing on time scales of a few days, an rms amplitude between 8% and 12%, and was detected in the persistent emission, during dips and during type I X-ray bursts. During one observation, when the count rate was a factor 2 to 3 higher than otherwise, the QPO was not detected. The strength of the QPO did not significantly depend on photon energy, and is consistent with being the same in the persistent emission, both during and outside the dips, and during type I X-ray bursts. Frequency shifts were observed during three of the four X-ray bursts. We argue that the QPO is produced by the same mechanism as the QPO recently found by Jonker et al. (1999) in 4U 1323-62. Although the exact mechanism is not clear, it is most likely related to the high inclination of both systems. An orbiting structure in the accretion disc that modulates the radiation from the central source seems the most promising mechanism

    Chandra and Swift observations of the quasi-persistent neutron star transient EXO 0748-676 back to quiescence

    Full text link
    The quasi-persistent neutron star X-ray transient and eclipsing binary EXO 0748-676 recently started the transition to quiescence following an accretion outburst that lasted more than 24 years. We report on two Chandra and twelve Swift observations performed within five months after the end of the outburst. The Chandra spectrum is composed of a soft, thermal component that fits to a neutron star atmosphere model with kT^inf~0.12 keV, joined by a hard powerlaw tail that contributes ~20% of the total 0.5-10 keV unabsorbed flux. The combined Chandra/Swift data set reveals a relatively hot and luminous quiescent system with a temperature of kT^inf~0.11-0.13 keV and a bolometric thermal luminosity of ~8.1E33-1.6E34 (d/7.4 kpc)^2 erg/s. We discuss our results in the context of cooling neutron star models.Comment: Accepted for publication in MNRAS Letters, moderate revision according to referee report, added one plot to figure 2 and included new Swift observations, 5 pages, 2 figure

    Spin Excitation Spectrum of La1−xAx_{1-x}A_xMnO3_3

    Full text link
    As an effective model to describe perovskite-type manganates (La,AA)MnO3_3, the double-exchange model on a cubic lattice is investigated. Spin excitation spectrum of the model in the ground state is studied using the spin wave approximation. Spin wave dispersion relation observed in the inelastic neutron scattering experiment of La0.7_{0.7}Pb0.3_{0.3}MnO3_3 is reproduced. Effective values for the electron bandwidth as well as Hund's coupling is estimated from the data.Comment: 10 pages LaTeX including 4 PS figure

    Gravitational waves from Sco X-1: A comparison of search methods and prospects for detection with advanced detectors

    Get PDF
    The low-mass X-ray binary Scorpius X-1 (Sco X-1) is potentially the most luminous source of continuous gravitational-wave radiation for interferometers such as LIGO and Virgo. For low-mass X-ray binaries this radiation would be sustained by active accretion of matter from its binary companion. With the Advanced Detector Era fast approaching, work is underway to develop an array of robust tools for maximizing the science and detection potential of Sco X-1. We describe the plans and progress of a project designed to compare the numerous independent search algorithms currently available. We employ a mock-data challenge in which the search pipelines are tested for their relative proficiencies in parameter estimation, computational efficiency, robust- ness, and most importantly, search sensitivity. The mock-data challenge data contains an ensemble of 50 Scorpius X-1 (Sco X-1) type signals, simulated within a frequency band of 50-1500 Hz. Simulated detector noise was generated assuming the expected best strain sensitivity of Advanced LIGO and Advanced VIRGO (4×10−244 \times 10^{-24} Hz−1/2^{-1/2}). A distribution of signal amplitudes was then chosen so as to allow a useful comparison of search methodologies. A factor of 2 in strain separates the quietest detected signal, at 6.8×10−266.8 \times 10^{-26} strain, from the torque-balance limit at a spin frequency of 300 Hz, although this limit could range from 1.2×10−251.2 \times 10^{-25} (25 Hz) to 2.2×10−262.2 \times 10^{-26} (750 Hz) depending on the unknown frequency of Sco X-1. With future improvements to the search algorithms and using advanced detector data, our expectations for probing below the theoretical torque-balance strain limit are optimistic.Comment: 33 pages, 11 figure

    Electronic and magnetic states in doped LaCoO_3

    Full text link
    The electronic and magnetic states in doped perovskite cobaltites, (La, Sr)CoO_3, are studied in the numerically exact diagonalization method on Co_2O_{11} clusters. For realistic parameter values, it is shown that a high spin state and an intermediate spin state coexist in one-hole doped clusters due to strong p-d mixing. The magnetic states in the doped cobaltites obtained in the calculation explain various experimental results.Comment: 4 pages, 2 figures, epsfj.st

    The Relationship Between X-ray Luminosity and Duty Cycle for Dwarf Novae and their Specific Frequency in the Inner Galaxy

    Get PDF
    We measure the duty cycles for an existing sample of well observed, nearby dwarf novae using data from AAVSO, and present a quantitative empirical relation between the duty cycle of dwarf novae outbursts and the X-ray luminosity of the system in quiescence. We have found that log⁥DC=0.63(±0.21)×(log⁥LX(erg s−1)−31.3)−0.95(±0.1)\log DC=0.63(\pm0.21)\times(\log L_{X}({\rm erg\,s^{-1}})-31.3)-0.95(\pm0.1), where DC stands for duty cycle. We note that there is intrinsic scatter in this relation greater than what is expected from purely statistical errors. Using the dwarf nova X-ray luminosity functions from \citet{Pretorius12} and \citet{Byckling10}, we compare this relation to the number of dwarf novae in the Galactic Bulge Survey which were identified through optical outbursts during an 8-day long monitoring campaign. We find a specific frequency of X-ray bright (LX>1031 erg s−1L_{X}>10^{31}\,{\rm erg\,s^{-1}}) Cataclysmic Variables undergoing Dwarf Novae outbursts in the direction of the Galactic Bulge of 6.6±4.7×10−5 M⊙−16.6\pm4.7\times10^{-5}\,M_{\odot}^{-1}. Such a specific frequency would give a Solar neighborhood space density of long period CVs of ρ=5.6±3.9×10−6 \rho=5.6\pm3.9\times10^{-6}\,pc−3^{-3}. We advocate the use of specific frequency in future work, given that projects like LSST will detect DNe well outside the distance range over which ρ≈const\rho\approx{\textrm const}.Comment: 9 pagers, 4 figures Accepted for publication in MNRA
    • 

    corecore