2,629 research outputs found
Constraints on Thermal X-ray Radiation from SAX J1808.4-3658 and Implications for Neutron Star Neutrino Emission
Thermal X-ray radiation from neutron star soft X-ray transients in quiescence
provides the strongest constraints on the cooling rates of neutron stars, and
thus on the interior composition and properties of matter in the cores of
neutron stars. We analyze new (2006) and archival (2001) XMM-Newton
observations of the accreting millisecond pulsar SAX J1808.4-3658 in
quiescence, which provide the most stringent constraints to date. The X-ray
spectrum of SAX J1808.4-3658 in the 2006 observation is consistent with a
power-law of photon index 1.83\pm0.17, without requiring the presence of a
blackbody-like component from a neutron star atmosphere. Our 2006 observation
shows a slightly lower 0.5-10 keV X-ray luminosity, at a level of
68^{+15}_{-13}% that inferred from the 2001 observation. Simultaneous fitting
of all available XMM data allows a constraint on the quiescent neutron star
(0.01-10 keV) luminosity of L_{NS}<1.1*10^{31} erg/s. This limit excludes some
current models of neutrino emission mediated by pion condensates, and provides
further evidence for additional cooling processes, such as neutrino emission
via direct Urca processes involving nucleons and/or hyperons, in the cores of
massive neutron stars.Comment: 5 pages, 2 figures; slight revisions, accepted by Ap
Low Temperature Magnetic Properties of the Double Exchange Model
We study the {\it ferromagnetic} (FM) Kondo lattice model in the strong
coupling limit (double exchange (DE) model). The DE mechanism proposed by Zener
to explain ferromagnetism has unexpected properties when there is more than one
itinerant electron. We find that, in general, the many-body ground state of the
DE model is {\it not} globally FM ordered (except for special filled-shell
cases). Also, the low energy excitations of this model are distinct from spin
wave excitations in usual Heisenberg ferromagnets, which will result in unusual
dynamic magnetic properties.Comment: 5 pages, RevTeX, 5 Postscript figures include
Further Constraints on Thermal Quiescent X-ray Emission from SAX J1808.4-3658
We observed SAX J1808.4-3658 (1808), the first accreting millisecond pulsar,
in deep quiescence with XMM-Newton and (near-simultaneously) Gemini-South. The
X-ray spectrum of 1808 is similar to that observed in quiescence in 2001 and
2006, describable by an absorbed power-law with photon index 1.74+-0.11 and
unabsorbed X-ray luminosity L_X=7.9+-0.7*10^{31} ergs/s, for N_H=1.3*10^{21}
cm^{-2}. Fitting all the quiescent XMM-Newton X-ray spectra with a power-law,
we constrain any thermally emitting neutron star with a hydrogen atmosphere to
have a temperature less than 30 eV and L_{NS}(0.01-10 keV)<6.2*10^{30} ergs/s.
A thermal plasma model also gives an acceptable fit to the continuum. Adding a
neutron star component to the plasma model produces less stringent constraints
on the neutron star; a temperature of 36^{+4}_{-8} eV and L_{NS}(0.01-10
keV)=1.3^{+0.6}_{-0.8}*10^{31} ergs/s. In the framework of the current theory
of neutron star heating and cooling, the constraints on the thermal luminosity
of 1808 and 1H 1905+000 require strongly enhanced cooling in the cores of these
neutron stars.
We compile data from the literature on the mass transfer rates and quiescent
thermal flux of the largest possible sample of transient neutron star LMXBs. We
identify a thermal component in the quiescent spectrum of the accreting
millisecond pulsar IGR J00291+5934, which is consistent with the standard
cooling model. The contrast between the cooling rates of IGR J00291+5934 and
1808 suggests that 1808 may have a significantly larger mass. This can be
interpreted as arising from differences in the binary evolution history or
initial neutron star mass in these otherwise similar systems.Comment: ApJ in press, 7 pages, 2 color figure
Radio sources in the Chandra Galactic Bulge Survey
We discuss radio sources in the Chandra Galactic Bulge Survey region. By cross-matching the X-ray sources in this field with the NRAO VLA Sky Survey archival data, we find 12 candidate matches. We present a classification scheme for radio/X-ray matches in surveys taken in or near the Galactic plane, taking into account other multiwavelength data. We show that none of the matches found here is likely to be due to coronal activity from normal stars because the radio to X-ray flux ratios are systematically too high. We show that one of the source could be a radio pulsar, and that one could be a planetary nebula, but that the bulk of the sources are likely to be background active galactic nuclei (AGN), with many confirmed through a variety of approaches. Several of the AGN are bright enough in the near-infrared (and presumably in the optical) to use as probes of the interstellar medium in the inner Galaxy
SAX J1808.4-3657 in Quiescence: A Keystone for Neutron Star Science
The accreting millisecond pulsar SAX J1808.4-3658 may be a transition object
between accreting X-ray binaries and millisecond radio pulsars. We have
constrained the thermal radiation from its surface through XMM-Newton X-ray
observations, providing strong evidence for neutrino cooling processes from the
neutron star core. We have also undertaken simultaneous X-ray and optical
(Gemini) observations, shedding light on whether the strong heating of the
companion star in quiescence may be due to X-ray irradiation, or to a radio
pulsar turning on when accretion stops.Comment: To appear in the proceedings of "Forty Years of Pulsars: Millisecond
Pulsars, Magnetars and More" held in Montreal, Canada, August 12-17, 2007. 4
page
A variable 0.58-2.44 Hz quasi-periodic oscillation in the eclipsing and dipping low-mass X-ray binary EXO 0748-676
We report the discovery of a quasi-periodic oscillation (QPO) in data obtained with the Rossi X-ray Timing Explorer of the dipping and eclipsing low-mass X-ray binary EXO 0748-676. The QPO had a frequency between 0.58 and 2.44 Hz changing on time scales of a few days, an rms amplitude between 8% and 12%, and was detected in the persistent emission, during dips and during type I X-ray bursts. During one observation, when the count rate was a factor 2 to 3 higher than otherwise, the QPO was not detected. The strength of the QPO did not significantly depend on photon energy, and is consistent with being the same in the persistent emission, both during and outside the dips, and during type I X-ray bursts. Frequency shifts were observed during three of the four X-ray bursts. We argue that the QPO is produced by the same mechanism as the QPO recently found by Jonker et al. (1999) in 4U 1323-62. Although the exact mechanism is not clear, it is most likely related to the high inclination of both systems. An orbiting structure in the accretion disc that modulates the radiation from the central source seems the most promising mechanism
Probing the Crust of the Neutron Star in EXO 0748-676
X-ray observations of quiescent X-ray binaries have the potential to provide
insight into the structure and the composition of neutron stars. EXO 0748-676
had been actively accreting for over 24 yr before its outburst ceased in late
2008. Subsequent X-ray monitoring revealed a gradual decay of the quiescent
thermal emission that can be attributed to cooling of the accretion-heated
neutron star crust. In this work, we report on new Chandra and Swift
observations that extend the quiescent monitoring to ~5 yr post-outburst. We
find that the neutron star temperature remained at ~117 eV between 2009 and
2011, but had decreased to ~110 eV in 2013. This suggests that the crust has
not fully cooled yet, which is supported by the lower temperature of ~95 eV
that was measured ~4 yr prior to the accretion phase in 1980. Comparing the
data to thermal evolution simulations reveals that the apparent lack of cooling
between 2009 and 2011 could possibly be a signature of convection driven by
phase separation of light and heavy nuclei in the outer layers of the neutron
star.Comment: 9 pages, 4 tables, 3 figures. Minor revisions according to referee
report. Accepted to Ap
Chandra and Swift observations of the quasi-persistent neutron star transient EXO 0748-676 back to quiescence
The quasi-persistent neutron star X-ray transient and eclipsing binary EXO
0748-676 recently started the transition to quiescence following an accretion
outburst that lasted more than 24 years. We report on two Chandra and twelve
Swift observations performed within five months after the end of the outburst.
The Chandra spectrum is composed of a soft, thermal component that fits to a
neutron star atmosphere model with kT^inf~0.12 keV, joined by a hard powerlaw
tail that contributes ~20% of the total 0.5-10 keV unabsorbed flux. The
combined Chandra/Swift data set reveals a relatively hot and luminous quiescent
system with a temperature of kT^inf~0.11-0.13 keV and a bolometric thermal
luminosity of ~8.1E33-1.6E34 (d/7.4 kpc)^2 erg/s. We discuss our results in the
context of cooling neutron star models.Comment: Accepted for publication in MNRAS Letters, moderate revision
according to referee report, added one plot to figure 2 and included new
Swift observations, 5 pages, 2 figure
Discovery of a high state AM CVn binary in the Galactic Bulge Survey
We report on the discovery of a hydrogen-deficient compact binary (CXOGBS
J175107.6-294037) belonging to the AM CVn class in the Galactic Bulge Survey.
Deep archival X-ray observations constrain the X-ray positional uncertainty of
the source to 0.57 arcsec, and allow us to uniquely identify the optical and UV
counterpart. Optical spectroscopic observations reveal the presence of broad,
shallow He i absorption lines while no sign of hydrogen is present, consistent
with a high state system. We present the optical lightcurve from Optical
Gravitational Lensing Experiment monitoring, spanning 15 years. It shows no
evidence for outbursts; variability is present at the 0.2 mag level on
timescales ranging from hours to weeks. A modulation on a timescale of years is
also observed. A Lomb-Scargle analysis of the optical lightcurves shows two
significant periodicities at 22.90 and 23.22 min. Although the physical
interpretation is uncertain, such timescales are in line with expectations for
the orbital and superhump periods. We estimate the distance to the source to be
between 0.5 - 1.1 kpc. Spectroscopic follow-up observations are required to
establish the orbital period, and to determine whether this source can serve as
a verification binary for the eLISA gravitational wave mission.Comment: Accepted for publication in MNRAS Letter
- âŠ