2,629 research outputs found

    Constraints on Thermal X-ray Radiation from SAX J1808.4-3658 and Implications for Neutron Star Neutrino Emission

    Get PDF
    Thermal X-ray radiation from neutron star soft X-ray transients in quiescence provides the strongest constraints on the cooling rates of neutron stars, and thus on the interior composition and properties of matter in the cores of neutron stars. We analyze new (2006) and archival (2001) XMM-Newton observations of the accreting millisecond pulsar SAX J1808.4-3658 in quiescence, which provide the most stringent constraints to date. The X-ray spectrum of SAX J1808.4-3658 in the 2006 observation is consistent with a power-law of photon index 1.83\pm0.17, without requiring the presence of a blackbody-like component from a neutron star atmosphere. Our 2006 observation shows a slightly lower 0.5-10 keV X-ray luminosity, at a level of 68^{+15}_{-13}% that inferred from the 2001 observation. Simultaneous fitting of all available XMM data allows a constraint on the quiescent neutron star (0.01-10 keV) luminosity of L_{NS}<1.1*10^{31} erg/s. This limit excludes some current models of neutrino emission mediated by pion condensates, and provides further evidence for additional cooling processes, such as neutrino emission via direct Urca processes involving nucleons and/or hyperons, in the cores of massive neutron stars.Comment: 5 pages, 2 figures; slight revisions, accepted by Ap

    Low Temperature Magnetic Properties of the Double Exchange Model

    Full text link
    We study the {\it ferromagnetic} (FM) Kondo lattice model in the strong coupling limit (double exchange (DE) model). The DE mechanism proposed by Zener to explain ferromagnetism has unexpected properties when there is more than one itinerant electron. We find that, in general, the many-body ground state of the DE model is {\it not} globally FM ordered (except for special filled-shell cases). Also, the low energy excitations of this model are distinct from spin wave excitations in usual Heisenberg ferromagnets, which will result in unusual dynamic magnetic properties.Comment: 5 pages, RevTeX, 5 Postscript figures include

    Further Constraints on Thermal Quiescent X-ray Emission from SAX J1808.4-3658

    Full text link
    We observed SAX J1808.4-3658 (1808), the first accreting millisecond pulsar, in deep quiescence with XMM-Newton and (near-simultaneously) Gemini-South. The X-ray spectrum of 1808 is similar to that observed in quiescence in 2001 and 2006, describable by an absorbed power-law with photon index 1.74+-0.11 and unabsorbed X-ray luminosity L_X=7.9+-0.7*10^{31} ergs/s, for N_H=1.3*10^{21} cm^{-2}. Fitting all the quiescent XMM-Newton X-ray spectra with a power-law, we constrain any thermally emitting neutron star with a hydrogen atmosphere to have a temperature less than 30 eV and L_{NS}(0.01-10 keV)<6.2*10^{30} ergs/s. A thermal plasma model also gives an acceptable fit to the continuum. Adding a neutron star component to the plasma model produces less stringent constraints on the neutron star; a temperature of 36^{+4}_{-8} eV and L_{NS}(0.01-10 keV)=1.3^{+0.6}_{-0.8}*10^{31} ergs/s. In the framework of the current theory of neutron star heating and cooling, the constraints on the thermal luminosity of 1808 and 1H 1905+000 require strongly enhanced cooling in the cores of these neutron stars. We compile data from the literature on the mass transfer rates and quiescent thermal flux of the largest possible sample of transient neutron star LMXBs. We identify a thermal component in the quiescent spectrum of the accreting millisecond pulsar IGR J00291+5934, which is consistent with the standard cooling model. The contrast between the cooling rates of IGR J00291+5934 and 1808 suggests that 1808 may have a significantly larger mass. This can be interpreted as arising from differences in the binary evolution history or initial neutron star mass in these otherwise similar systems.Comment: ApJ in press, 7 pages, 2 color figure

    Radio sources in the Chandra Galactic Bulge Survey

    Get PDF
    We discuss radio sources in the Chandra Galactic Bulge Survey region. By cross-matching the X-ray sources in this field with the NRAO VLA Sky Survey archival data, we find 12 candidate matches. We present a classification scheme for radio/X-ray matches in surveys taken in or near the Galactic plane, taking into account other multiwavelength data. We show that none of the matches found here is likely to be due to coronal activity from normal stars because the radio to X-ray flux ratios are systematically too high. We show that one of the source could be a radio pulsar, and that one could be a planetary nebula, but that the bulk of the sources are likely to be background active galactic nuclei (AGN), with many confirmed through a variety of approaches. Several of the AGN are bright enough in the near-infrared (and presumably in the optical) to use as probes of the interstellar medium in the inner Galaxy

    SAX J1808.4-3657 in Quiescence: A Keystone for Neutron Star Science

    Full text link
    The accreting millisecond pulsar SAX J1808.4-3658 may be a transition object between accreting X-ray binaries and millisecond radio pulsars. We have constrained the thermal radiation from its surface through XMM-Newton X-ray observations, providing strong evidence for neutrino cooling processes from the neutron star core. We have also undertaken simultaneous X-ray and optical (Gemini) observations, shedding light on whether the strong heating of the companion star in quiescence may be due to X-ray irradiation, or to a radio pulsar turning on when accretion stops.Comment: To appear in the proceedings of "Forty Years of Pulsars: Millisecond Pulsars, Magnetars and More" held in Montreal, Canada, August 12-17, 2007. 4 page

    A variable 0.58-2.44 Hz quasi-periodic oscillation in the eclipsing and dipping low-mass X-ray binary EXO 0748-676

    Get PDF
    We report the discovery of a quasi-periodic oscillation (QPO) in data obtained with the Rossi X-ray Timing Explorer of the dipping and eclipsing low-mass X-ray binary EXO 0748-676. The QPO had a frequency between 0.58 and 2.44 Hz changing on time scales of a few days, an rms amplitude between 8% and 12%, and was detected in the persistent emission, during dips and during type I X-ray bursts. During one observation, when the count rate was a factor 2 to 3 higher than otherwise, the QPO was not detected. The strength of the QPO did not significantly depend on photon energy, and is consistent with being the same in the persistent emission, both during and outside the dips, and during type I X-ray bursts. Frequency shifts were observed during three of the four X-ray bursts. We argue that the QPO is produced by the same mechanism as the QPO recently found by Jonker et al. (1999) in 4U 1323-62. Although the exact mechanism is not clear, it is most likely related to the high inclination of both systems. An orbiting structure in the accretion disc that modulates the radiation from the central source seems the most promising mechanism

    Probing the Crust of the Neutron Star in EXO 0748-676

    Get PDF
    X-ray observations of quiescent X-ray binaries have the potential to provide insight into the structure and the composition of neutron stars. EXO 0748-676 had been actively accreting for over 24 yr before its outburst ceased in late 2008. Subsequent X-ray monitoring revealed a gradual decay of the quiescent thermal emission that can be attributed to cooling of the accretion-heated neutron star crust. In this work, we report on new Chandra and Swift observations that extend the quiescent monitoring to ~5 yr post-outburst. We find that the neutron star temperature remained at ~117 eV between 2009 and 2011, but had decreased to ~110 eV in 2013. This suggests that the crust has not fully cooled yet, which is supported by the lower temperature of ~95 eV that was measured ~4 yr prior to the accretion phase in 1980. Comparing the data to thermal evolution simulations reveals that the apparent lack of cooling between 2009 and 2011 could possibly be a signature of convection driven by phase separation of light and heavy nuclei in the outer layers of the neutron star.Comment: 9 pages, 4 tables, 3 figures. Minor revisions according to referee report. Accepted to Ap

    Chandra and Swift observations of the quasi-persistent neutron star transient EXO 0748-676 back to quiescence

    Full text link
    The quasi-persistent neutron star X-ray transient and eclipsing binary EXO 0748-676 recently started the transition to quiescence following an accretion outburst that lasted more than 24 years. We report on two Chandra and twelve Swift observations performed within five months after the end of the outburst. The Chandra spectrum is composed of a soft, thermal component that fits to a neutron star atmosphere model with kT^inf~0.12 keV, joined by a hard powerlaw tail that contributes ~20% of the total 0.5-10 keV unabsorbed flux. The combined Chandra/Swift data set reveals a relatively hot and luminous quiescent system with a temperature of kT^inf~0.11-0.13 keV and a bolometric thermal luminosity of ~8.1E33-1.6E34 (d/7.4 kpc)^2 erg/s. We discuss our results in the context of cooling neutron star models.Comment: Accepted for publication in MNRAS Letters, moderate revision according to referee report, added one plot to figure 2 and included new Swift observations, 5 pages, 2 figure

    Discovery of a high state AM CVn binary in the Galactic Bulge Survey

    Get PDF
    We report on the discovery of a hydrogen-deficient compact binary (CXOGBS J175107.6-294037) belonging to the AM CVn class in the Galactic Bulge Survey. Deep archival X-ray observations constrain the X-ray positional uncertainty of the source to 0.57 arcsec, and allow us to uniquely identify the optical and UV counterpart. Optical spectroscopic observations reveal the presence of broad, shallow He i absorption lines while no sign of hydrogen is present, consistent with a high state system. We present the optical lightcurve from Optical Gravitational Lensing Experiment monitoring, spanning 15 years. It shows no evidence for outbursts; variability is present at the 0.2 mag level on timescales ranging from hours to weeks. A modulation on a timescale of years is also observed. A Lomb-Scargle analysis of the optical lightcurves shows two significant periodicities at 22.90 and 23.22 min. Although the physical interpretation is uncertain, such timescales are in line with expectations for the orbital and superhump periods. We estimate the distance to the source to be between 0.5 - 1.1 kpc. Spectroscopic follow-up observations are required to establish the orbital period, and to determine whether this source can serve as a verification binary for the eLISA gravitational wave mission.Comment: Accepted for publication in MNRAS Letter
    • 

    corecore