105 research outputs found

    Multiple primary tumours: incidence estimation in the presence of competing risks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Estimating the risk of developing subsequent primary tumours in a population is difficult since the occurrence probability is conditioned to the survival probability.</p> <p>Methods</p> <p>We proposed to apply Markov models studying the transition intensities from first to second tumour with the Aalen-Johansen (AJ) estimators, as usually done in competing risk models. In a simulation study we applied the proposed method in different settings with constant or varying underlying intensities and applying age standardisation. In addition, we illustrated the method with data on breast cancer from the Piedmont Cancer Registry.</p> <p>Results</p> <p>The simulation study showed that the person-years approach led to a sensibly wider bias than the AJ estimators. The largest bias was observed assuming constantly increasing incidence rates. However, this situation is rather uncommon dealing with subsequent tumours incidence. In 9233 cases with breast cancer occurred in women resident in Turin, Italy, between 1985 and 1998 we observed a significant increased risk of 1.91 for subsequent cancer of corpus uteri, estimated with the age-standardised Aalen-Johansen incidence ratio (AJ-IR<sup>stand</sup>), and a significant increased risk of 1.29 for cancer possibly related to the radiotherapy of breast cancer. The peak of occurrence of those cancers was observed after 8 years of follow-up.</p> <p>Conclusion</p> <p>The increased risk of a cancer of the corpus uteri, also observed in other studies, is usually interpreted as the common shared risk factors such as low parity, early menarche and late onset of menopause. We also grouped together those cancers possibly associated to a previous local radiotherapy: the cumulative risk at 14 years is still not significant, however the AJ estimators showed a significant risk peak between the eighth and the ninth year. Finally, the proposed approach has been shown to be reliable and informative under several aspects. It allowed for a correct estimation of the risk, and for investigating the time trend of the subsequent cancer occurrence.</p

    Factors Determining Nestedness in Complex Networks

    Get PDF
    Understanding the causes and effects of network structural features is a key task in deciphering complex systems. In this context, the property of network nestedness has aroused a fair amount of interest as regards ecological networks. Indeed, Bastolla et al. introduced a simple measure of network nestedness which opened the door to analytical understanding, allowing them to conclude that biodiversity is strongly enhanced in highly nested mutualistic networks. Here, we suggest a slightly refined version of such a measure of nestedness and study how it is influenced by the most basic structural properties of networks, such as degree distribution and degree-degree correlations (i.e. assortativity). We find that most of the empirically found nestedness stems from heterogeneity in the degree distribution. Once such an influence has been discounted – as a second factor – we find that nestedness is strongly correlated with disassortativity and hence – as random networks have been recently found to be naturally disassortative – they also tend to be naturally nested just as the result of chance.This work was supported by Junta de Andalucia projects FQM-01505 and P09-FQM4682, and by Spanish MEC-FEDER project FIS2009-08451. S.J. is grateful for financial support from the European Commision under the Marie Curie Intra-European Fellowship Programme PIEF-GA-2010-276454

    Hybrid Flooding Scheme for Mobile Ad Hoc Networks

    No full text

    Isocyanide substitution in octadecacarbonyl hexaosmium

    No full text
    The crystal structures of the two isocyanide substituted hexaosmium clusters, Os6 (CO)18 (CNC6 H4 Me)2 and Os6 (CO)16 (CNCMe3)2 are reported. The former involves both a triple bridging and a terminal isonitrile group whilst the latter is related to the parent carbonyl Os6 (CO)18. The molecular structures are discussed in terms of electronic inequivalences within the metal cluster framework
    • 

    corecore