20 research outputs found

    How cardiac embryology translates into clinical arrhythmias

    Get PDF
    The electrophysiological signatures of the myocardium in cardiac structures, such as the atrioventricular node, pulmonary veins or the right ventricular outflow tract, are established during development by the spatial and temporal expression of transcription factors that guide expression of specific ion channels. Genome-wide association studies have shown that small variations in genetic regions are key to the expression of these transcription factors and thereby modulate the electrical function of the heart. Moreover, mutations in these factors are found in arrhythmogenic pathologies such as congenital atrioventricular block, as well as in specific forms of atrial fibrillation and ventricular tachycardia. In this review, we discuss the developmental origin of distinct electrophysiological structures in the heart and their involvement in cardiac arrhythmias.Cardiolog

    Next-generation sequencing-based genome diagnostics across clinical genetics centers: Implementation choices and their effects

    Get PDF
    Implementation of next-generation DNA sequencing (NGS) technology into routine diagnostic genome care requires strategic choices. Instead of theoretical discussions on the consequences of such choices, we compared NGS-based diagnostic practices in eight clinical genetic centers in the Netherlands, based on genetic testing of nine pre-selected patients with cardiomyopathy. We highlight critical implementation choices, including the specific contributions of laboratory and medical specialists, bioinformaticians and researchers to diagnostic genome care, and how these affect interpretation and reporting of variants. Reported pathogenic mutations were consistent for all but one patient. Of the two centers that were inconsistent in their diagnosis, one reported to have found 'no causal variant', thereby underdiagnosing this patient. The other provided an alternative diagnosis, identifying another variant as causal than the other centers. Ethical and legal analysis showed that informed consent procedures in all centers were generally adequate for diagnostic NGS applications that target a limited set of genes, but not for exome- and genome-based diagnosis. We propose changes to further improve and align these procedures, taking into account the blurring boundary between diagnostics and research, and specific counseling options for exome- and genome-based diagnostics. We conclude that alternative diagnoses may infer a certain level of 'greediness' to come to a positive diagnosis in interpreting sequencing results. Moreover, there is an increasing interdependence of clinic, diagnostics and research departments for comprehensive diagnostic genome care. Therefore, we invite clinical geneticists, physicians, researchers, bioinformatics experts and patients to reconsider their role and position in future diagnostic genome care

    NT-proBNP and exercise capacity in adult patients with congenital heart disease and a prosthetic valve: a multicentre PROSTAVA study

    Get PDF
    Contains fulltext : 171019.pdf (publisher's version ) (Open Access)OBJECTIVES: N-terminal Btype natriuretic peptide (NT-proBNP) is an important biomarker for the detection of heart failure. Adults with congenital heart disease (ACHD) and a prosthetic heart valve are at risk for heart failure. This study aimed to determine the value of NT-proBNP in ACHD patients with a prosthetic valve and investigate its relationship with cardiac function and exercise capacity. METHODS: In this multi-centre cross-sectional observational study, data regarding medical history, echocardiography, exercise testing (VO2peak) and laboratory blood evaluation (including NT-proBNP) were collected in ACHD patients with a single prosthetic valve (either homografts, heterografts or mechanical valves). RESULTS: A total of 306 ACHD patients with pulmonary valve replacement (PVR, n = 139), aortic valve replacement (n = 141), mitral valve replacement (n = 21) or tricuspid valve replacement (n = 5) were investigated. The majority of patients (77 %) were in NYHA class I or II. Elevated NT-proBNP levels (cut-off >/=125 pg/ml) were found in 50 % of the patients, with the highest levels in patients with mitral valve replacements. In this study population, NT-proBNP levels were associated with gender (p = 0.029) and VO2max (p < 0.001). In PVR patients, NT-proBNP levels were associated with lower VO2peak, also after adjustment for age, gender and age at valve replacement in a multivariate model (p = 0.015). CONCLUSIONS: In patients with ACHD and a prosthetic valve, elevated NT-proBNP levels are frequently observed despite preserved NYHA class. In PVR patients, a higher NT-proBNP level was associated with a lower VO2peak. These results may be of importance in the ongoing discussion about the timing of valve replacement in patients with CHD

    14-3-3epsilon controls multiple developmental processes in the mouse heart

    No full text
    International audienceBACKGROUND:14-3-3ε plays an important role in the maturation of the compact ventricular myocardium by modulating the cardiomyocyte cell cycle via p27kip1 . However, additional cardiac defects are possible given the ubiquitous expression pattern of this protein.RESULTS:Germ line deletion of 14-3-3ε led to malalignment of both the outflow tract (OFT) and atrioventricular (AV) cushions, with resulting tricuspid stenosis and atresia, mitral valve abnormalities, and perimembranous ventricular septal defects (VSDs). We confirmed myocardial non-compaction and detected a spongy septum with muscular VSDs and blebbing of the epicardium. These defects were associated with abnormal patterning of p27kip1 expression in the subendocardial and possibly the epicardial cell populations. In addition to abnormal pharyngeal arch artery patterning, we found deep endocardial recesses and paucity of intramyocardial coronary vasculature as a result of defective coronary plexus remodeling.CONCLUSIONS:The malalignment of both endocardial cushions provides a new explanation for tricuspid and mitral valve defects, while myocardial non-compaction provides the basis for the abnormal coronary vasculature patterning. These abnormalities might arise from p27kip1 dysregulation and a resulting defect in epithelial-to-mesenchymal transformation. These data suggest that 14-3-3ε, in addition to left ventricular non-compaction (LVNC), might be linked to different forms of congenital heart disease (CHD). Developmental Dynamics 245:1107-1123, 2016. © 2016 Wiley Periodicals, Inc

    Common genetic variants improve risk stratification after the atrial switch operation for transposition of the great arteries.

    No full text
    BACKGROUND: Clinical factors are used to estimate late complication risk in adults after atrial switch operation (AtrSO) for transposition of the great arteries (TGA), but heterogeneity in clinical course remains. We studied whether common genetic variants are associated with outcome and add value to a clinical risk score in TGA-AtrSO patients. METHODS AND RESULTS: This multicenter study followed 133 TGA-AtrSO patients (aged 28 [IQR 24-35] years) for 13 (IQR 9-16) years and examined the association of genome-wide single-nucleotide polymorphisms (SNPs) with a composite endpoint of symptomatic ventricular arrhythmia, heart failure hospitalization, ventricular assist device implantation, heart transplantation, or mortality. Thirty-two patients (24%) reached the endpoint. The genome-wide association study yielded one genome-wide significant (p 20%) risk. Stratified by the combined score, observed 5-year event-free survival was 100%, 79% and 31% for low, intermediate, and high-risk patients, respectively. CONCLUSIONS: Common genetic variants may explain some variation in the clinical course in TGA-AtrSO and improve risk stratification over clinical factors alone, especially in patients at intermediate clinical risk. These findings support the hypothesis that including genetic variants in risk assessment may be beneficial
    corecore