3,351 research outputs found

    Solar magnetic field reversal as seen at Ulysses

    Get PDF
    The rapid motion of the Ulysses spacecraft from high southern to high northern latitudes in 2000–2001 provided an excellent opportunity to make inferences regarding the solar magnetic dipole's behaviour around solar maximum. A simple dipole model is fitted to Ulysses measurements of the polarity of the heliospheric magnetic field mapped back to the solar wind source surface. Although higher order components of the field are ignored, the gradual reversal in orientation of the dipole field component can be followed during solar maximum, with the dipole axis crossing the solar equator during early 2000–early 2001. The dipole appears to exhibit a rotation at a slower rate than the Carrington frame of reference, similar to previous measurements made around solar maximum in the solar equatorial regions

    Incorporating Chiral Symmetry in Extrapolations of Octet Baryon Magnetic Moments

    Get PDF
    We explore methods of extrapolating lattice calculations of hadronic observables to the physical regime, while respecting the constraints of chiral symmetry and heavy quark effective theory. In particular, we extrapolate lattice results for magnetic moments of the spin-1/2 baryon octet to the physical pion mass and compare with experimental measurements. The success previously reported for extrapolations of the nucleon magnetic moments carries over to the Sigma baryons. A study of the residual discrepancies in the Xi baryon moments suggests that it is important to have new simulation data with a more realistic strange quark mass.Comment: 9 pages, 4 figure

    Submersible Avoidance by Yellowfin Bass, Anthias nicholsi

    Get PDF

    On the design and feasibility of refractory metal-base Superalloys

    Get PDF
    Over the last 60 years, the evolution of nickel-base superalloys has enabled successive generations of gas turbine engines to operate at progressively higher temperatures. However, despite continued research activity, capability enhancement has become incremental and it seems unlikely that nickel-base superalloys will be able to support the requirements of future engine designs. Therefore, to enable a step change in operating temperatures, it is necessary to identify and develop new alloy systems, which, in addition to higher temperature capability, also have the correct balance of mechanical and environmental properties. Here, we outline an alloy design philosophy and report on the initial characterisation of one of the potential alloy systems. High temperature properties are dominated by the melting temperature and crystal structure of the principal element. Thus, only 11 elements offer capability above that of nickel-base alloys. However, if terrestrial abundance and cost are also considered, then only the bcc refractory metals remain as viable options. Intrinsic environmental resistance above 1000˚C can be afforded only by the formation of protective silica or alumina scales, requiring the incorporation of at least one of these elements in reasonable concentrations. In addition the required balance of mechanical properties is only likely to be achieved by the production of a microstructure containing a fine dispersion of small intermetallic precipitates, which have a coherent superlattice structure of solid solution matrix. The simplest materials identified by this approach are ternary refractory metal-base alloys, e.g. Ta‑Al‑Co. However, the phase equilibria of these systems, particularly in the refractory rich corners, are poorly defined. To address this issue and explore the potential of these materials, a series of alloys in the Ta-rich corner of the Ta‑Al‑Co system have been created and characterised following 500 hour heat treatments at temperatures between 1000 and 1300 ̊C. As part of this work the first conclusive evidence of a large-unit-celled Ta2AlCo phase was obtained, which may give potential for refractory metal-base superalloys

    Freeze–thaw cycles have minimal effect on the mineralisation of low molecular weight, dissolved organic carbon in Arctic soils

    Get PDF
    Warmer winters in Arctic regions may melt insulating snow cover and subject soils to more freeze– thaw cycles. The effect of freeze–thaw cycles on the microbial use of low molecular weight, dissolved organic carbon (LMW-DOC) is poorly understood. In this study, soils from the Arctic heath tundra, Arctic meadow tundra and a temperate grassland were frozen to -7.5 C and thawed once and three times. Subsequently, the mineralisation of 3 LMW-DOC substrates types (sugars, amino acids and peptides) was measured over an 8-day period and compared to controls which had not been frozen. This allowed the comparison of freeze–thaw effects between Arctic and temperate soil and between different substrates. The results showed that freeze–thaw cycles had no significant effect on C mineralisation in the Arctic tundra soils. In contrast, for the same intensity freeze–thaw cycles, a significant effect on C mineralisation was observed for all substrate types in the temperate soil although the response was substrate specific. Peptide and amino acid mineralisation were similarly affected by FT, whilst glucose had a different response. Further work is required to fully understand microbial use of LMW-DOC after freeze–thaw, yet these results suggest that relatively short freeze–thaw cycles have little effect on microbial use of LMW-DOC in Arctic tundra soils after thaw

    Stripped elliptical galaxies as probes of ICM physics : III. Deep Chandra observation of NGC 4552 - Measuring the viscosity of the intracluster medium

    Get PDF
    We present results from a deep (200 ks) Chandra observation of the early-type galaxy NGC 4552 (M89) which is falling into the Virgo cluster. Previous shallower X-ray observations of this galaxy showed a remnant gas core, a tail to the South of the galaxy, and twin `horns' attached to the northern edge of the gas core [machacek05a]. In our deeper data, we detect a diffuse, low surface brightness extension to the previously known tail, and measure the temperature structure within the tail. We combine the deep Chandra data with archival XMM-Newton observations to put a strong upper limit on the diffuse emission of the tail out to a large distance (10×the radius of the remnant core) from the galaxy center. In our two previous papers [roediger15a,roediger15b], we presented the results of hydrodynamical simulations of ram pressure stripping specifically for M89 falling into the Virgo cluster and investigated the effect of ICM viscosity. In this paper, we compare our deep data with our specifically tailored simulations and conclude that the observed morphology of the stripped tail in NGC 4552 is most similar to the inviscid models. We conclude that, to the extent the transport processes can be simply modeled as a hydrodynamic viscosity, the ICM viscosity is negligible. More generally, any micro-scale description of the transport processes in the high-β plasma of the cluster ICM must be consistent with the efficient mixing observed in the stripped tail on macroscopic scales

    Use of very high resolution climate model data for hydrological modelling: baseline performance and future flood changes

    Get PDF
    Increasingly, data from Regional Climate Models (RCMs) are used to drive hydrological models, to investigate the potential water-related impacts of climate change, particularly for flood and droughts. Generally, some form of further downscaling of RCM data has been required, but recently the first decadal-length runs of very high resolution RCMs (with convection-permitting scales) have been performed. Here, a set of such runs for southern Britain has been used to drive a gridded hydrological model. Results using a 1.5km RCM nested in a 12km RCM driven by European-reanalysis boundary conditions show that the 1.5km RCM generally performs worse than the 12km RCM for simulating river flows in 32 example catchments. The clear spatial patterns of bias are consistent with bias patterns shown in the RCM precipitation data. Results using 1.5km and 12km RCM runs for the current climate and a potential future climate (driven by GCM boundary conditions) show clear differences in projected changes in flood peaks. The 1.5km RCM tends towards larger increases than the 12km RCM, particularly in spring and winter. If robust, this could have important consequences for adaptation planning under climate change, but further research is required, particularly given the greater biases in the baseline flow simulations driven by 1.5km RCM data, and the use of only a single short future climate projection

    Study of Stretched Configuration High-Spin States in the Nickel Region with the (d,α) Reaction

    Get PDF
    This work was supported by the National Science Foundation Grant NSF PHY 78-22774 A02 & A03 and by Indiana Universit

    Disease threats to farmed green-lipped mussels Perna canaliculus in New Zealand: Review of challenges in risk assessment and pathway analysis

    Get PDF
    The endemic green-lipped mussel (GLM) Perna canaliculus is a key cultural and economic species for New Zealand. Unlike other cultured shellfish species, GLMs have experienced relatively few disease issues. The apparent absence of diseases in both wild and farmed GLM populations does not preclude risks from environmental changes or from the introduction of overseas mussel pathogens and parasites. Potential for disease exchange between the GLM and other mytilid species present in New Zealand has yet to be elucidated. After reviewing and discussing relevant scientific literature, we present an initial assessment of GLM vulnerability to disease threats and the potential risk pathways for mussel pathogens and parasites into New Zealand and highlight a number of challenges. These include knowledge gaps relevant to GLM susceptibility to exotic pathogens and parasites, risk pathways into New Zealand and biosecurity risk associated with domestic pathways. Considerations and findings could potentially apply to other farmed aquatic species with limited distribution range and/or low disease exposure

    Collisions of Cosmic F- and D-strings

    Full text link
    Recent work suggests that fundamental and Dirichlet strings, and their (p,q) bound states, may be observed as cosmic strings. The evolution of cosmic string networks, and therefore their observational signals, depends on what happens when two strings collide. We study this in string perturbation theory for collisions between all possible pairs of strings; different cases involve sphere, disk, and annulus amplitudes. The result also depends on the details of compactification; the dependence on ratios of scales is only logarithmic, but this is still numerically important. We study a range of models and parameters, and find that in most cases these strings can be distinguished from cosmic strings that arise as gauge theory solitons.Comment: 42 pages, 7 figures; v.2: added references, expanded discussion of reconnection in field theor
    • …
    corecore