366 research outputs found

    High eccentricity planets from the Anglo-Australian Planet Search

    Get PDF
    We report Doppler measurements of the stars HD187085 and HD20782 which indicate two high eccentricity low-mass companions to the stars. We find HD187085 has a Jupiter-mass companion with a ~1000d orbit. Our formal `best fit' solution suggests an eccentricity of 0.47, however, it does not sample the periastron passage of the companion and we find that orbital solutions with eccentricities between 0.1 and 0.8 give only slightly poorer fits (based on RMS and chi^2) and are thus plausible. Observations made during periastron passage in 2007 June should allow for the reliable determination of the orbital eccentricity for the companion to HD187085. Our dataset for HD20782 does sample periastron and so the orbit for its companion can be more reliably determined. We find the companion to HD20782 has M sin i=1.77+/-0.22M_JUP, an orbital period of 595.86+/-0.03d and an orbit with an eccentricity of 0.92+/-0.03. The detection of such high-eccentricity (and relatively low velocity amplitude) exoplanets appears to be facilitated by the long-term precision of the Anglo-Australian Planet Search. Looking at exoplanet detections as a whole, we find that those with higher eccentricity seem to have relatively higher velocity amplitudes indicating higher mass planets and/or an observational bias against the detection of high eccentricity systems.Comment: to appear in MNRA

    Magnetron priming by multiple cathodes

    Full text link
    A relativistic magnetron priming technique using multiple cathodes is simulated with a three-dimensional, fully electromagnetic, particle-in-cell code. This technique is based on electron emission from N/2N∕2 individual cathodes in an NN-cavity magnetron to prime the ππ mode. In the case of the six-cavity relativistic magnetron, ππ-mode start-oscillation times are reduced up to a factor of 4, and mode competition is suppressed. Most significantly, the highest microwave field power is observed by utilizing three cathodes compared to other recently explored priming techniques.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87840/2/081501_1.pd

    On the Double Planet System Around HD 83443

    Get PDF
    The Geneva group has reported two Saturn-mass planets orbiting HD 83443 (K0V) with periods of 2.98 and 29.8 d. The two planets have raised interest in their dynamics because of the possible 10:1 orbital resonance and the strong gravitational interactions. We report precise Doppler measurements of HD 83443 obtained with the Keck/HIRES and the AAT/UCLES spectrometers. These measurements strongly confirm the inner planet with period of 2.985 d, with orbital parameters in very good agreement with those of the Geneva group. However these Doppler measurements show no evidence of the outer planet, at thresholds of 1/4 (3 m/s) of the reported velocity amplitude of 13.8 m/s. Thus, the existence of the outer planet is in question. Indeed, the current Doppler measurements reveal no evidence of any second planet with periods less than a year.Comment: 26 pages incl. 3 tables and 8 figures; uses AASTE

    Two extra-solar planets from the Anglo-Australian Planet Search

    Get PDF
    We report the detection of two new extra-solar planets from the Anglo-Australian Planet Search around the stars HD142 and HD23079. The planet orbiting HD142 has an orbital period of just under one year, while that orbiting HD23079 has a period of just under two years. HD142 falls into the class of "eccentric" gas giants. HD23079 lies in the recently uncovered class of "epsilon Ret-like" planets - extra-solar gas giant planets with near-circular orbits outside 0.1 a.u. The recent discovery of several more members of this class provides new impetus for the extension of existing planet searches to longer periods, in the search for Jupiter-like planets in Jupiter-like orbits.Comment: 6 pages, 4 figures and 3 tables include

    A Super-Earth and Two Neptunes Orbiting the Nearby Sun-like Star 61 Virginis

    Get PDF
    We present precision radial velocity data that reveal a multiple exoplanet system orbiting the bright nearby G5V star 61 Virginis. Our 4.6 years of combined Keck/HIRES and Anglo-Australian Telescope precision radial velocities indicate the hitherto unknown presence of at least three planets orbiting this well-studied star. These planets are all on low-eccentricity orbits with periods of 4.2, 38.0, and 124.0 days, and projected masses (Msin i) of 5.1, 18.2, and 24.0 M_⊕, respectively. Test integrations of systems consistent with the radial velocity data suggest that the configuration is dynamically stable. Depending on the effectiveness of tidal dissipation within the inner planet, the inner two planets may have evolved into an eccentricity fixed-point configuration in which the apsidal lines of all three planets corotate. This conjecture can be tested with additional observations. We present a 16-year time series of photometric observations of 61 Virginis, which comprise 1194 individual measurements, and indicate that it has excellent photometric stability. No significant photometric variations at the periods of the proposed planets have been detected. This new system is the first known example of a G-type Sun-like star hosting a Super-Earth mass planet. It joins HD 75732 (55 Cnc), HD 69830, GJ 581, HD 40307, and GJ 876 in a growing group of exoplanet systems that have multiple planets orbiting with periods less than an Earth-year. The ubiquity of such systems portends that space-based transit-search missions such as Kepler and CoRoT will find many multi-transiting systems

    Evidence for Reflected Light from the Most Eccentric Exoplanet Known

    Get PDF
    This is an author-created, un-copyedited version of an article published in The Astrophysical Journal. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.3847/0004-637X/821/1/65.Planets in highly eccentric orbits form a class of objects not seen within our solar system. The most extreme case known among these objects is the planet orbiting HD20782, with an orbital period of 597days and an eccentricity of 0.96. Here we present new data and analysis for this system as part of the Transit Ephemeris Refinement and Monitoring Survey. We obtained CHIRON spectra to perform an independent estimation of the fundamental stellar parameters. New radial velocities from Anglo-Australian Telescope and PARAS observations during periastron passage greatly improve our knowledge of the eccentric nature of the orbit. The combined analysis of our Keplerian orbital and Hipparcos astrometry show that the inclination of the planetary orbit is >1.22, ruling out stellar masses for the companion. Our long-term robotic photometry show that the star is extremely stable over long timescales. Photometric monitoring of the star during predicted transit and periastron times using Microvariability and Oscillations of STars rule out a transit of the planet and reveal evidence of phase variations during periastron. These possible photometric phase variations may be caused by reflected light from the planet’s atmosphere and the dramatic change in star–planet separation surrounding the periastron passage.Peer reviewedFinal Accepted Versio

    Antiviral CD8(+) T Cells Restricted by Human Leukocyte Antigen Class II Exist during Natural HIV Infection and Exhibit Clonal Expansion.

    Get PDF
    CD8(+) T cell recognition of virus-infected cells is characteristically restricted by major histocompatibility complex (MHC) class I, although rare examples of MHC class II restriction have been reported in Cd4-deficient mice and a macaque SIV vaccine trial using a recombinant cytomegalovirus vector. Here, we demonstrate the presence of human leukocyte antigen (HLA) class II-restricted CD8(+) T cell responses with antiviral properties in a small subset of HIV-infected individuals. In these individuals, T cell receptor ÎČ (TCRÎČ) analysis revealed that class II-restricted CD8(+) T cells underwent clonal expansion and mediated killing of HIV-infected cells. In one case, these cells comprised 12% of circulating CD8(+) T cells, and TCRα analysis revealed two distinct co-expressed TCRα chains, with only one contributing to binding of the class II HLA-peptide complex. These data indicate that class II-restricted CD8(+) T cell responses can exist in a chronic human viral infection, and may contribute to immune control

    Evidence for reflected light from the most eccentric exoplanet known

    Get PDF
    Planets in highly eccentric orbits form a class of objects not seen within our Solar System. The most extreme case known amongst these objects is the planet orbiting HD 20782, with an orbital period of 597 days and an eccentricity of 0.96. Here we present new data and analysis for this system as part of the Transit Ephemeris Refinement and Monitoring Survey (TERMS). We obtained CHIRON spectra to perform an independent estimation of the fundamental stellar parameters. New radial velocities from AAT and PARAS observations during periastron passage greatly improve the our knowledge of the eccentric nature of the orbit. The combined analysis of our Keplerian orbital and Hipparcos astrometry show that the inclination of the planetary orbit is > 1.25 degrees, ruling out stellar masses for the companion. Our long-term robotic photometry show that the star is extremely stable over long timescales. Photometric monitoring of the star during predicted transit and periastron times using MOST rule out a transit of the planet and reveal evidence of phase variations during periastron. These possible photometric phase variations are likely caused by reflected light from the planet's atmosphere and the dramatic change in star--planet separation surrounding the periastron passage
    • 

    corecore