492 research outputs found

    Observations of diurnal coastal-trapped waves with a thermocline-intensified velocity field

    Get PDF
    Author Posting. Ā© American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(7), (2019): 1973-1994, doi: 10.1175/JPO-D-18-0194.1.Using 18 days of field observations, we investigate the diurnal (D1) frequency wave dynamics on the Tasmanian eastern continental shelf. At this latitude, the D1 frequency is subinertial and separable from the highly energetic near-inertial motion. We use a linear coastal-trapped wave (CTW) solution with the observed background current, stratification, and shelf bathymetry to determine the modal structure of the first three resonant CTWs. We associate the observed D1 velocity with a superimposed mode-zero and mode-one CTW, with mode one dominating mode zero. Both the observed and mode-one D1 velocity was intensified near the thermocline, with stronger velocities occurring when the thermocline stratification was stronger and/or the thermocline was deeper (up to the shelfbreak depth). The CTW modal structure and amplitude varied with the background stratification and alongshore current, with no springā€“neap relationship evident for the observed 18 days. Within the surface and bottom Ekman layers on the shelf, the observed velocity phase changed in the cross-shelf and/or vertical directions, inconsistent with an alongshore propagating CTW. In the near-surface and near-bottom regions, the linear CTW solution also did not match the observed velocity, particularly within the bottom Ekman layer. Boundary layer processes were likely causing this observed inconsistency with linear CTW theory. As linear CTW solutions have an idealized representation of boundary dynamics, they should be cautiously applied on the shelf.An Australian Research Council Discovery Project (DP 140101322), and a UWA Research Collaboration Award funded this work. T. L. Schlosser acknowledges the support of an Australian Government Research Training Program (RTP) Scholarship. We thank the crew, volunteers and scientists who aided in the field data collection aboard the R/V Revelle, which was funded by the National Science Foundation (OCE-1129763). The continental slope moorings, T4 (M32) and T3 (M44), were also funded by the National Science Foundation (OCE-1129763) and were conceived, planned, and executed by Matthew Alford, Jennifer Mackinnon, Jonathan Nash, Harper Simmons, and Gunnar Voet. We also thank Harper Simmons for the combined R/V Revelle multibeam and Geoscience Australia bathymetry used in this study. We thank the two anonymous reviewers whose comments improved this work.2020-01-1

    Aquilegia, Vol. 12 No. 1, January-February 1988: Newsletter of the Colorado Native Plant Society

    Get PDF
    The Colorado Native Plant Society Newsletter will be published on a bimonthly basis. The contents will consist primarily of a calendar of events, notes of interest, editorials, listings of new members and conservation news. Until there is a Society journal, the Newsletter will include short articles also. The deadline for the Newsletter is one month prior to its release.https://epublications.regis.edu/aquilegia/1038/thumbnail.jp

    Practical suggestions for harms reporting in exercise oncology : the Exercise Harms Reporting Method (ExHaRM)

    Get PDF
    The volume of high-quality evidence supporting exercise as beneficial to cancer survivors has grown exponentially; however, the potential harms of exercise remain understudied. Consequently, the trade-off between desirable and undesirable outcomes of engaging in exercise remains unclear to clinicians and people with cancer. Practical guidance on collecting and reporting harms in exercise oncology is lacking. We present a harms reporting protocol developed and refined through exercise oncology trials since 2015. Development of the Exercise Harms Reporting Method (ExHaRM) was informed by national and international guidelines for harms reporting in clinical trials involving therapeutic goods or medical devices, with adaptations to enhance applicability to exercise. The protocol has been adjusted via an iterative process of implementation and adjustment through use in multiple exercise oncology trials involving varied cancer diagnoses (types: breast, brain, gynaecological; stages at diagnosis Iā€“IV; primary/ recurrent), and heterogeneous exercise intervention characteristics (face to face/telehealth delivery; supervised/unsupervised exercise). It has also involved the development of terms (such as, adverse outcomes, which capture all undesirable physical, psychological, social and economic outcomes) that facilitate the harms assessment process in exercise. ExHaRM involves: step 1: Monitor occurrence of adverse outcomes through systematic and non-systematic surveillance; step 2: Assess and record adverse outcomes, including severity, causality, impact on intervention and type; step 3: Review of causality by harms panel (and revise as necessary); and step 4: Analyse and report frequencies, rates and clinically meaningful details of all-cause and exercise-related adverse outcomes. ExHaRM provides guidance to improve the quality of harms assessment and reporting immediately, while concurrently providing a framework for future refinement. Future directions include, but are not limited to, standardising exercise-specific nomenclature and methods of assessing causality

    Remote but not isolated ā€“ microplastics and mesoplastics present in the sub-surface waters of the Canadian Arctic Archipelago

    Get PDF
    As the remote Canadian Arctic Archipelago (CAA) becomes increasingly connected to the rest of the world, there is an impetus to monitor the possible impact of this connectivity. The potential for increases in localised sources of plastic pollution resulting from the increasing navigability of the remote north has yet to be explored. Here we investigate microplastic samples which were collected aboard the Canadian Coast Guard Ship (CCGS) Amundsen in the summer of 2018 using the underway pump and a filtration system with Fourier transform infrared analysis. We investigate the character, abundance, and distribution of microplastic particles and fibres in the sub-surface waters across the Canadian Arctic and add to the limited dataset on plastic pollution in this region. We find that there are low concentrations of microplastics ranging from 0 to 0.282 n Lā€“1 (average 0.031 Ā± 0.017 n Lā€“1), comprising 71% polyester and acrylics. We investigate the size distribution of retained particles and fibres on three different filter mesh sizes connected to the underway pump (300, 100, and 50 Ī¼m) and find that a 300 Ī¼m mesh and a 100 Ī¼m mesh retain only 6 and 56%, respectively, of the total particles and fibres. We explore the role of shipping as a potential source of textile fibres and we suggest that future monitoring of plastics in the Canadian Arctic should use the current shipping fleet to monitor its own plastic footprint, utilising the underway pump and mesh sizes < 100 Ī¼m

    Partnerships to Address School Safety through a Student Support Lens

    Get PDF
    School safety is a primary concern of school leaders, employees, parents, and a variety of community stakeholders. Attempts to mitigate and prevent school safety concerns often focus on strategies around school climate assessment, emergency communication, school safety plan development, and school resource officer employment (U.S. DHS et al., 2018). Involvement of key stakeholders, such as school social workers, school counselors, and school-based mental health professionals is emphasized in creating and assessing school safety in a wholistic manner. This article provides an overview of a Trainings to Increase School Safety grant program that was implemented with public school stakeholders through partnerships between a university and five public school districts in the Southeastern North Carolina region

    Multiplexing siRNAs to compress RNAi-based screen size in human cells

    Get PDF
    Here we describe a novel strategy using multiplexes of synthetic small interfering RNAs (siRNAs) corresponding to multiple gene targets in order to compress RNA interference (RNAi) screen size. Before investigating the practical use of this strategy, we first characterized the gene-specific RNAi induced by a large subset (258 siRNAs, 129 genes) of the entire siRNA library used in this study (āˆ¼800 siRNAs, āˆ¼400 genes). We next demonstrated that multiplexed siRNAs could silence at least six genes to the same degree as when the genes were targeted individually. The entire library was then used in a screen in which randomly multiplexed siRNAs were assayed for their affect on cell viability. Using this strategy, several gene targets that influenced the viability of a breast cancer cell line were identified. This study suggests that the screening of randomly multiplexed siRNAs may provide an important avenue towards the identification of candidate gene targets for downstream functional analyses and may also be useful for the rapid identification of positive controls for use in novel assay systems. This approach is likely to be especially applicable where assay costs or platform limitations are prohibitive

    Systems-wide RNAi analysis of CASP8AP2/FLASH shows transcriptional deregulation of the replication-dependent histone genes and extensive effects on the transcriptome of colorectal cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Colorectal carcinomas (CRC) carry massive genetic and transcriptional alterations that influence multiple cellular pathways. The study of proteins whose loss-of-function (LOF) alters the growth of CRC cells can be used to further understand the cellular processes cancer cells depend upon for survival.</p> <p>Results</p> <p>A small-scale RNAi screen of ~400 genes conducted in SW480 CRC cells identified several candidate genes as required for the viability of CRC cells, most prominently <it>CASP8AP2</it>/<it>FLASH</it>. To understand the function of this gene in maintaining the viability of CRC cells in an unbiased manner, we generated gene specific expression profiles following RNAi. Silencing of <it>CASP8AP2</it>/<it>FLASH </it>resulted in altered expression of over 2500 genes enriched for genes associated with cellular growth and proliferation. Loss of CASP8AP2/FLASH function was significantly associated with altered transcription of the genes encoding the replication-dependent histone proteins as a result of the expression of the non-canonical polyA variants of these transcripts. Silencing of <it>CASP8AP2</it>/<it>FLASH </it>also mediated enrichment of changes in the expression of targets of the NFĪŗB and MYC transcription factors. These findings were confirmed by whole transcriptome analysis of <it>CASP8AP2</it>/<it>FLASH </it>silenced cells at multiple time points. Finally, we identified and validated that CASP8AP2/FLASH LOF increases the expression of neurofilament heavy polypeptide (NEFH), a protein recently linked to regulation of the AKT1/Ɵ-catenin pathway.</p> <p>Conclusions</p> <p>We have used unbiased RNAi based approaches to identify and characterize the function of CASP8AP2/FLASH, a protein not previously reported as required for cell survival. This study further defines the role CASP8AP2/FLASH plays in the regulating expression of the replication-dependent histones and shows that its LOF results in broad and reproducible effects on the transcriptome of colorectal cancer cells including the induction of expression of the recently described tumor suppressor gene <it>NEFH</it>.</p

    Intrinsically disordered protein biosensor tracks the physical-chemical effects of osmotic stress on cells.

    Get PDF
    Cell homeostasis is perturbed when dramatic shifts in the external environment cause the physical-chemical properties inside the cell to change. Experimental approaches for dynamically monitoring these intracellular effects are currently lacking. Here, we leverage the environmental sensitivity and structural plasticity of intrinsically disordered protein regions (IDRs) to develop a FRET biosensor capable of monitoring rapid intracellular changes caused by osmotic stress. The biosensor, named SED1, utilizes the Arabidopsis intrinsically disordered AtLEA4-5 protein expressed in plants under water deficit. Computational modeling and in vitro studies reveal that SED1 is highly sensitive to macromolecular crowding. SED1 exhibits large and near-linear osmolarity-dependent changes in FRET inside living bacteria, yeast, plant, and human cells, demonstrating the broad utility of this tool for studying water-associated stress. This study demonstrates the remarkable ability of IDRs to sense the cellular environment across the tree of life and provides a blueprint for their use as environmentally-responsive molecular tools
    • ā€¦
    corecore