2,068 research outputs found

    The 5'-3' exoribonuclease Pacman (Xrn1) regulates expression of the heat shock protein Hsp67Bc and the microRNA miR-277-3p in Drosophila wing imaginal discs

    Get PDF
    Pacman/Xrn1 is a highly conserved exoribonuclease known to play a critical role in gene regulatory events such as control of mRNA stability, RNA interference and regulation via miRNAs. Although Pacman has been well studied in Drosophila tissue culture cells, the biologically relevant cellular pathways controlled by Pacman in natural tissues are unknown. This study shows that a hypomorphic mutation in pacman (pcm5) results in smaller wing imaginal discs. These tissues, found in the larva, are known to grow and differentiate to form wing and thorax structures in the adult fly. Using microarray analysis, followed by quantitative RT-PCR, we show that eight mRNAs were increased in level by >2 fold in the pcm5 mutant wing discs compared to the control. The levels of pre mRNAs were tested for five of these mRNAs; four did not increase in the pcm5 mutant, showing that they are regulated at the post-transcriptional level and therefore could be directly affected by Pacman. These transcripts include one that encodes the heat-shock protein Hsp67Bc, which is upregulated 11.9-fold at the post-transcriptional level and 2.3-fold at the protein level. One miRNA, miR-277-3p, is 5.6-fold downregulated at the post-transcriptional level in mutant discs, suggesting that Pacman affects its processing in this tissue. Together, these data show that a relatively small number of mRNAs and miRNAs substantially change in abundance in pacman mutant wing imaginal discs. Since Hsp67Bc is known to regulate autophagy and protein synthesis, it is possible that Pacman may control the growth of wing imaginal discs by regulating these processes

    RNA-seq reveals post-transcriptional regulation of Drosophila insulin-like peptide dilp8 and the neuropeptide-like precursor Nplp2 by the exoribonuclease Pacman/XRN1

    Get PDF
    Ribonucleases are critically important in many cellular and developmental processes and defects in their expression are associated with human disease. Pacman/XRN1 is a highly conserved cytoplasmic exoribonuclease which degrades RNAs in a 5' - 3' direction. In Drosophila, null mutations in pacman result in small imaginal discs, a delay in onset of pupariation and lethality during the early pupal stage. In this paper, we have used RNA-seq in a genome-wide search for mRNAs misregulated in pacman null wing imaginal discs. Only 4.2% of genes are misregulated ±>2-fold in pacman null mutants compared to controls, in line with previous work showing that Pacman has specificity for particular mRNAs. Further analysis of the most upregulated mRNAs showed that Pacman post-transcriptionally regulates the expression of the secreted insulin-like peptide Dilp8. Dilp8 is related to human IGF-1, and has been shown to co-ordinate tissue growth with developmental timing in Drosophila. The increased expression of Dilp8 is consistent with the developmental delay seen in pacman null mutants. Our analysis, together with our previous results, show that the normal role of this exoribonuclease in imaginal discs is to suppress the expression of transcripts that are crucial in apoptosis and growth control during normal development

    Flux of transcript patterns during soybean seed development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To understand gene expression networks leading to functional properties of the soybean seed, we have undertaken a detailed examination of soybean seed development during the stages of major accumulation of oils, proteins, and starches, as well as the desiccating and mature stages, using microarrays consisting of up to 27,000 soybean cDNAs. A subset of these genes on a highly-repetitive 70-mer oligonucleotide microarray was also used to support the results.</p> <p>Results</p> <p>It was discovered that genes related to cell growth and maintenance processes, as well as energy processes like photosynthesis, decreased in expression levels as the cotyledons approached the mature, dry stage. Genes involved with some storage proteins had their highest expression levels at the stage of highest fresh weight. However, genes encoding many transcription factors and DNA binding proteins showed higher expression levels in the desiccating and dry seeds than in most of the green stages.</p> <p>Conclusions</p> <p>Data on 27,000 cDNAs have been obtained over five stages of soybean development, including the stages of major accumulation of agronomically-important products, using two different types of microarrays. Of particular interest are the genes found to peak in expression at the desiccating and dry seed stages, such as those annotated as transcription factors, which may indicate the preparation of pathways that will be needed later in the early stages of imbibition and germination.</p

    Photochemical “in-air” combinatorial discovery of antimicrobial co-polymers

    Get PDF
    There is an urgent need to identify new, non‐traditional antimicrobials. The discovery of new polymeric antimicrobials is limited by current low‐throughput synthetic tools, which means that limited chemical space has been explored. Herein, we employ photochemical “in‐air” reversible addition–fragmentation chain‐transfer (RAFT) polymerization with microwell plates, using liquid‐handling robots to assemble large libraries of cationic polymers, without the need for degassing or purification steps, facilitating transfer to screening. Several lead polymers were identified including a co‐polymer with propylene glycol side chains with significantly enhanced antimicrobial activity and increased therapeutic window. Mechanistic studies showed that this polymer was bacteriostatic, and surprisingly did not lyse the cell membranes, implying an alternative mode of action. This versatile method using simple robotics will help to develop new biomaterials with emergent properties

    Antiretroviral Therapy for HIV-2 Infection: Recommendations for Management in Low-Resource Settings

    Get PDF
    HIV-2 contributes approximately a third to the prevalence of HIV in West Africa and is present in significant amounts in several low-income countries outside of West Africa with historical ties to Portugal. It complicates HIV diagnosis, requiring more expensive and technically demanding testing algorithms. Natural polymorphisms and patterns in the development of resistance to antiretrovirals are reviewed, along with their implications for antiretroviral therapy. Nonnucleoside reverse transcriptase inhibitors, crucial in standard first-line regimens for HIV-1 in many low-income settings, have no effect on HIV-2. Nucleoside analogues alone are not sufficiently potent enough to achieve durable virologic control. Some protease inhibitors, in particular those without ritonavir boosting, are not sufficiently effective against HIV-2. Following review of the available evidence and taking the structure and challenges of antiretroviral care in West Africa into consideration, the authors make recommendations and highlight the needs of special populations

    Xrn1/Pacman affects apoptosis and regulates expression of hid and reaper

    Get PDF
    Programmed cell death, or apoptosis, is a highly conserved cellular process that is crucial for tissue homeostasis under normal development as well as environmental stress. Misregulation of apoptosis is linked to many developmental defects and diseases such as tumour formation, autoimmune diseases and neurological disorders. In this paper, we show a novel role for the exoribonuclease Pacman/Xrn1 in regulating apoptosis. Using Drosophila wing imaginal discs as a model system, we demonstrate that a null mutation in pacman results in small imaginal discs as well as lethality during pupation. Mutant wing discs show an increase in the number of cells undergoing apoptosis, especially in the wing pouch area. Compensatory proliferation also occurs in these mutant discs, but this is insufficient to compensate for the concurrent increase in apoptosis. The phenotypic effects of the pacman null mutation are rescued by a deletion that removes one copy of each of the pro-apoptotic genes reaper, hid and grim, demonstrating that pacman acts through this pathway. The null pacman mutation also results in a significant increase in the expression of the pro-apoptotic mRNAs, hid and reaper, with this increase mostly occurring at the post-transcriptional level, suggesting that Pacman normally targets these mRNAs for degradation. Our results uncover a novel function for the conserved exoribonuclease Pacman and suggest that this exoribonuclease is important in the regulation of apoptosis in other organisms

    Targeted delivery of anti-inflammatory therapy to rheumatoid tissue by fusion proteins containing an IL-4-linked synovial targeting peptide

    Get PDF
    We provide first-time evidence that the synovial endothelium-targeting peptide (SyETP) CKSTHDRLC successfully delivers conjugated IL-4 to human rheumatoid synovium transplanted into SCID mice. SyETP, previously isolated by in vivo phage display and shown to preferentially localize to synovial xenografts, was linked by recombinant technology to hIL-4 via an MMP-cleavable sequence. Both IL-4 and the MMP-cleavable sequence were shown to be functional. IL-4-SyETP augmented production of IL-1ra by synoviocytes stimulated with IL-1[beta] in a dose-dependent manner. In vivo imaging confirmed increased retention of SyETP-linked-IL-4 in synovial grafts which was enhanced by increasing number of copies (one to three) in the constructs. Strikingly, SyETP delivered bioactive IL-4 in vivo as demonstrated by increased pSTAT6 in synovial grafts. Thus, this study provides proof of concept for peptide-tissue-specific targeted immunotherapy in rheumatoid arthritis. This technology is potentially applicable to other biological therapies providing enhanced potency to inflammatory sites and reducing systemic toxicity

    A novel role for the 3′-5′ exoribonuclease Dis3L2 in controlling cell proliferation and tissue growth

    Get PDF
    In a complex organism, cell proliferation and apoptosis need to be precisely controlled in order for tissues to develop correctly. Excessive cell proliferation can lead to diseases such as cancer. We have shown that the exoribonuclease Dis3L2 is required for the correct regulation of proliferation in a natural tissue within the model organism Drosophila melanogaster. Dis3L2 is a member of a highly conserved family of exoribonucleases that degrade RNA in a 3′-5′ direction. We show that knockdown of dis3L2 in the Drosophila wing imaginal discs results in substantial wing overgrowth due to increased cellular proliferation rather than an increase in cell size. Imaginal discs are specified in the embryo before proliferating and differentiating to form the adult structures of the fly. Using RNA-seq we identified a small set of mRNAs that are sensitive to Dis3L2 activity. Of the mRNAs which increase in levels and are therefore potential targets of Dis3L2, we identified 2 that change at the post-transcriptional level but not at the transcriptional level, namely CG2678 (a transcription factor) and pyrexia (a TRP cation channel). We also demonstrate a compensatory effect between Dis3L2 and the 5′-3′ exoribonuclease Pacman demonstrating that these 2 exoribonucleases function to regulate opposing pathways within the developing tissue. This work provides the first description of the molecular and developmental consequences of Dis3L2 inactivation in a non-human animal model. The work is directly relevant to the understanding of human overgrowth syndromes such as Perlman syndrome
    corecore