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Abstract 

 

We provide first-time evidence that the synovial endothelium-targeting peptide (SyETP) 

CKSTHDRLC successfully delivers conjugated IL4 to human rheumatoid synovium transplanted 

into SCID mice. SyETP, previously isolated by in vivo phage display and shown to preferentially 

localize to synovial xenografts, was linked by recombinant technology to hIL-4 via an MMP-

cleavable sequence. Both IL-4 and the MMP-cleavable sequence were shown to be functional.  

IL-4-SyETP augmented production of IL-1ra by synoviocytes stimulated with IL-1β  in a dose-

dependent manner.  In vivo imaging confirmed increased retention of SyETP-linked-IL-4 in 

synovial grafts which was enhanced by increasing number of copies (one to three) in the 

constructs. Strikingly, SyETP delivered bioactive IL-4 in vivo as demonstrated by increased 

pSTAT6 in synovial grafts. Thus, this study provides proof of concept for peptide-tissue-specific 

targeted immunotherapy in rheumatoid arthritis. This technology is potentially applicable to 

other biological therapies providing enhanced potency to inflammatory sites and reducing 

systemic toxicity.   
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Introduction 

Rheumatoid arthritis (RA) is a systemic, inflammatory autoimmune disorder that presents as a 

symmetric arthritis associated with swelling and pain in multiple joints.  Articular inflammation 

causes activation and proliferation of the synovial tissue with hypertrophy of the lining layer, 

expression of inflammatory cytokines, chemokine-mediated recruitment of inflammatory cells, 

as well as B cell activation with autoantibody production1-3. Cytokines such as interleukin (IL)-1, 

Tumour Necrosis Factor (TNF) and IL-6 are found in great abundance4.  These cytokines 

mediate cartilage and bone degradation by augmenting matrix degrading enzymes such as 

aggrecanases and matrix metalloproteinases and the activation of osteoclasts, which cause, bone 

resorption.   

 

Antagonists to these cytokines now play a fundamental role in the treatment of RA, most notably 

anti-TNF.  These treatments result in clinical benefits for the majority of patients3, however,  up 

to 30-40% of patients do not respond. In addition, due to systemic immunosuppression, there is a 

risk of reactivation of latent infections such as tuberculosis.  There is a great need for the 

development of new targeted therapies, as they have the potential for diminishing systemic 

toxicity while increasing pharmacological drug concentrations at the disease site. 

 

One therapeutic approach to decrease pro-inflammatory cytokine expression is to administer 

anti-inflammatory cytokines, several of which have been shown to be effective in models of 

RA4-11.  These include IFNβ5, IL-106 and IL-4, which has been shown to reduce cartilage 

destruction and inhibit neoangiogenesis7,8 as well as sharing some of the anti-inflammatory 

properties of IL-104, 9-11.  Clinical trials with IL-4 however reported a lack of efficacy, and it was 
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speculated that to achieve an efficacious dose in the synovium, the administered dose would not 

be tolerated systemically.  This cytokine pleiotropism is a limitation to their clinical use.   

 

One approach to overcome these problems is to target the delivery of cytokine to the specific 

diseased tissue. Linking cytokines to targeting peptides or antibodies are progressing to clinical 

trials for the treatment of cancer12-14. However, this therapeutic modality in chronic inflammatory 

conditions such as RA has so far been relatively unexplored.   

 

Neoangiogenesis in RA, similarly to cancer, leads to an enlarged vascular bed and leukocyte 

infiltration within the synovial tissues and ultimately accelerates disease progression15.  These 

new vessels are discontinuous, leaky and present a dysregulated expression of a number of 

molecules such as integrins, cell surface proteoglycans, proteases, and extracellular matrix 

components as well as endothelial cell growth factor receptors which are virtually absent or 

barely detectable in established blood vessels16.  The differences between these new vessels in 

RA and normal vessels provide a good opportunity for targeted therapy.   

 

Neoangiogenesis is also observed when RA synovial tissue is transplanted into SCID mice. We 

have used this xenograft model for identification of tissue-specific synovial homing motifs17. 

This has been facilitated by the application of phage display of random peptides18,19 and antibody 

fragment libraries20 to target microvasculature endothelium (MVE) in various tissues21,22. 

Homing peptide sequences have been generated for numerous organs in mice and human tumour 

vasculature23,24 and have been shown to target and concentrate drugs to tumours engrafted in 

nude mice21,23.  Notably, conjugation of the NGR homing peptide to TNF improved the 
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therapeutic index of TNF in preclinical studies25 and NGR fused to human TNF is now entering 

Phase III clinical trials in cancer.  

 

Treatment of mice with collagen-induced arthritis with RGD-containing cyclic peptide (RGD-

4C), linked to a proapoptotic peptide dimer [D(KLAKLAK)2], decreased clinical arthritis and 

increased apoptosis of synovial blood vessels26. Recently, an unconjugated phage-encoded 

(CLDNQRPKC) peptide suppressed adjuvant-induced arthritis, attributed at least in part to 

peptide-mediated reduction of T-cell trafficking and the inhibition of angiogenesis27,28.  

 

However, to our knowledge, there are no studies in the literature demonstrating specific targeting 

to human arthritic tissue.  We have previously identified a synovial endothelium targeting 

peptide (SyETP) that targets endothelial cells within vessels of human inflamed synovial tissue 

grafted into SCID mice29.  Here we present evidence that fusion proteins consisting of the SyETP 

(CKSTHDRLC) linked to the anti-inflammatory cytokine IL-4 led to specific accumulation of 

the cytokine in synovial tissue transplanted into SCID mice and demonstrated local delivery by 

the increased STAT-6 phosphorylation detected within synovial but not to skin grafts. Thus this 

study provides proof of concept that homing peptides are a viable means of targeting therapeutics 

to the MVE of human synovial tissue, opening up a new avenue for translating these findings 

into novel treatment strategies for patients with inflammatory arthritis.  
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Results 

 

Design, expression and characterization of peptide-cytokine fusion proteins 

Fusion proteins were designed to allow genetic fusion of SyETP (CKSTHDRLC29) to hIL-4. The 

first fusion protein was constructed by adding a single copy of SyETP to the IL-4 C terminal (IL-

4 single peptide: IL-4SP) [Fig. 1a (i)].  To increase avidity of binding, a second fusion protein 

was constructed by adding three copies of the synovial homing peptide (IL-4 triple peptide: IL-

4TP) with the SyETPs separated from each other by a rigid spacer peptide30 [Fig. 1a (ii)].  A 

6xHis tag was added to each fusion protein to enable purification by affinity chromatography 

(Supplementary Methods).  In addition, as the inflammatory microenvironment is enriched in 

matrix metalloproteinases 31, an MMP-cleavable sequence32 was inserted between the hIL-4 and 

synovial homing peptides, with the aim of enabling release of the hIL-4 from the homing peptide 

at the disease site.  This is expected to perform two functions: firstly, enable the hIL-4 to diffuse 

and interact with target cells physically separate from those cells recognizing the SyETP, and 

secondly, remove any inhibition of hIL-4 activity which might be conferred by attachment of the 

SyETP.   In addition, as a short peptide, we would expect the proteolytically released SyETP to 

be degraded rapidly, thus avoiding local saturation of the SyETP binding sites and potentially 

enabling increased accumulation of the therapeutic payload.  A control construct (IL-4 triple 

scrambled peptide: IL-4TS), containing 3 copies of a scrambled peptide (CRKLHTSDC; Fig. 1a) 

was also generated [Fig.1a (iii)]. 

 

Fusion proteins were expressed in insect cells using the baculovirus system and purified by 

immobilized metal ion affinity chromatography (Supplementary Methods). Incubation with 

MMP1 in vitro confirmed the susceptibility of the proteins to cleavage, shown by reduction in 
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molecular weight (anti-IL-4 antibody) and loss of reactivity with anti-His antibody, which is 

expected upon loss of the C-terminal peptide containing the 6xHis tag [Fig. 1b]. To confirm the 

IL-4 in the fusion proteins was bioactive, we employed the TF-1 human erythroleukemia cell 

line which proliferates in response to IL-4. Bioactivity of the IL-4 fusion proteins was confirmed 

by measuring intracellular ATP accumulation as a surrogate marker for TF-1 cell proliferation 

(Supplementary Methods). IL-4TP and the scrambled control (IL-4TS) stimulated TF1 cell 

proliferation to the same degree [Fig 1c]. Upon digestion with MMP1 IL-4 bioactivity was 

increased in both proteins.  Importantly, IL-4 bioactivities of IL-4TP and IL-4TS did not differ 

significantly from each other (EC50s within 2-fold) pre- and post-cleavage with MMP1 [Fig.1c].  

 

IL-4 synergises with IL-1β to enhance IL-1ra production from synoviocytes in vitro. 

To assess whether SyETP-linked IL-4 retained the capacity of activating anti-inflammatory 

pathways, primary RA- and OA-SF were stimulated with rIL-4 in the presence of the pro-

inflammatory cytokine IL-1β (Supplementary Methods). Figure 2 shows that there was no 

constitutive expression of IL-1ra from resting synoviocytes isolated from patients with both RA 

and OA.  Upon stimulation with IL-1β (10ng/ml), the concentration of IL-1ra in the culture 

supernatant was measured at 300pg/ml.  Such IL-1ra induction was enhanced in a dose 

dependent fashion with increasing concentrations of rhIL-4 (5-50ng/ml) ranging from 1000-

1500pg/ml. Importantly, rhIL-4 alone did not induce IL-1ra production.  The synergistic effect of 

IL-4 and IL-1β on IL-1ra production was also observed for all three fusion proteins, albeit to a 

different degree.  Importantly, however, there were no significant differences in the capability of 

the three fusion proteins to enhance IL-1ra production.  In all cases, pre-incubation with IL-4 

induced a highly significant (p<0.001) increase in the production of IL-1ra over IL-1β alone 
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(Fig. 2).  This indicates that SyETP-linked IL-4 retained the capacity of stimulating the 

production of an anti-inflammatory cytokine in the presence of IL-1β. 

 

The synovial specific peptide (CKSTHDRLC) retains targeting capability of fusion 

proteins to synovial grafts in vivo. 

Having confirmed in vitro that the IL-4 in the constructs was bioactive and could activate anti-

inflammatory pathways, we next wanted to confirm that the SyETP in the fusion proteins had 

retained the synovial targeting capability in vivo.  To assess this we radiolabeled the fusion 

proteins with 125I and administered them intravenously into grafted SCID mice (Fig 3 a,b). Prior 

to that experiment we confirmed that radiolabeling did not affect the integrity of the fusion 

proteins (Supplementary Figure 1).  In vivo imaging by NanoSPECT-CT allowed quantification 

of the level of radioactivity in the grafts per mm3 of tissue. To allow direct comparison of the 

results from individual mice and to normalise for the levels of radioactivity administered, the 

data are expressed as a ratio of level of radioactivity retained by synovium over that in skin 

control per mm3 of tissue at each time point.  Figure 3a shows a two-fold increase in the level of 

activity in the synovium versus the skin for IL-4SP during the first 30 minutes post-injection.  

Importantly, by exploiting the increased avidity of the triple peptide (IL-4-TP) the higher activity 

could be extended to 180 minutes, peaking between 90-120 minutes post-injection.  In contrast, 

the scrambled IL-4-TS showed no enhanced retention by the synovial graft and dissipated from 

both synovial and skin xenografts at the same rate.  These data confirm that SyETP 

(CKSTHDRLC) leads to preferential accumulation of fusion proteins in synovial compared to 

control skin grafts. 
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Systemic administration of SyETP-, but not scrambled-peptide-linked-IL-4, results in 

functional bioactivity in synovial but not skin grafts in vivo. 

In order to assess whether the IL-4 linked to the SyETP and delivered to synovial grafts 

maintains functional bioactivity in vivo, we measured STAT6 phosphorylation (pSTAT6) in the 

targeted synovial and skin control grafts. STAT6 is a Th2-associated transcription factor that is 

activated by IL-4 through phosphorylation in the cytoplasm, which is followed by translocation 

to the nucleus.  Thus, we measured the level of STAT6 phosphorylation in the cytoplasmic and 

nuclear fractions of the grafts by Western blot following intravenous (i.v.) administration of 

SyETP-fusion proteins. As a positive control, rIL-4 was injected intra-graft (i.g.).  Prior to the in 

vivo experiments, we confirmed the ability of all three fusion proteins to induce STAT6 

phosphorylation by stimulating fragments of synovial tissue (organ culture) in vitro. Without 

stimulation, no phosphorylated STAT6 could be detected in the synovial tissue in either the 

cytoplasmic or the nuclear fractions (data not shown).  However, following stimulation with both 

the fusion proteins and rIL-4, phosphorylated STAT6 was clearly detected. The level of 

phosphorylation was similar with each of the proteins [Fig.4a]. Having confirmed the ability of 

the fusion proteins to induce STAT6 phosphorylation in synovial tissue, we then assessed to 

what degree functional bioactivity was maintained in vivo.  As seen in Figure 4b, rIL-4 

administered intra-graft (i.g.) induced hyperphosphorylation of STAT6 in both the synovial and 

skin grafts, with an average increase of 13 and 17 fold over the PBS control.  These data confirm 

that both synovial and skin grafted human tissues could respond well to rIL-4.  Conversely, and 

of critical importance, upon intravenous (i.v.) administration of fusion proteins, only low levels 

of pSTAT6 were detected in the cytoplasmic fractions of the skin grafts.  In contrast, IL-4SP and 

IL-4TP induced an average of 8 and 11 fold increases respectively in the synovial grafts, 

approximately 5 fold greater than the scrambled control peptide (p=0.004 and p=0.001), 
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emphasizing the crucial role of the SyETP sequence in delivery of bioactive molecules to 

synovial tissue  [Fig.4 b,c]. The same pattern was observed in the nuclear fractions (data not 

shown). 
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Discussion 

In this study we have demonstrated that recombinant fusion proteins containing one or three 

copies of a SyETP can target and retain IL-4 in synovial tissue grafts and that the length of time 

the fusion proteins are retained increases with increased copies of the peptide. In addition, we 

have shown that the conjugated rIL-4 is delivered in a bioactive form in vivo.  These experiments 

were preceded by in vitro confirmation that IL-4 in the fusion proteins was bioactive and the 

MMP cleavage site accessible and susceptible to cleavage with MMP1.  In vitro the fusion 

proteins were shown to have approximately equal IL-4 bioactivity both pre- and post-cleavage 

with MMP1.   We were also able to demonstrate the capacity of these constructs to exert anti-

inflammatory activity by measuring the induction of an anti-inflammatory mediator: IL-1ra.  

 

It is well know that in RA, pro- and anti- inflammatory cytokine networks are operational both at 

local and systemic levels and that IL-1β and TNF are pivotal for the development of chronicity 

and tissue damage33,34.  The physiological activity of IL-1 is controlled by its naturally occurring 

inhibitor, IL-1ra which binds to IL-1 receptors without activating the target cell.  It is thought 

that dysregulation of IL-1ra may be responsible for the predominance of IL-1 in RA35.  The main 

source of IL-1ra in the joint are synovial macrophages, although RA synovial fibroblasts (RASF) 

also produce it.  Both cell types are known to contribute significantly to the perpetuation of 

disease36,37. Notably, IL-4 has been shown to reduce IL-1β production by increasing IL-1Ra in 

these cells38,39.  In our study we have shown that IL-4 augments secretion of IL-1ra by RASF in 

the presence of IL-1β in vitro both alone and when conjugated to SyETP thereby validating the 

capacity of our constructs to deliver powerful anti-inflammatory signals.  
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Importantly, these in vitro experiments provided the evidence to support the rationale for testing 

the therapeutic properties of the constructs in vivo, on the premise that, if SyETP conjugation 

delivers IL-4 preferentially to synovial tissue, this would increase the therapeutic index of the 

cytokine as has been shown for TNF when conjugated to the tumour neovasculature by the 

homing peptide NGR in a pre-clinical model25. Clinical use of TNF has been limited due to 

systemic toxicity 40, however NGR-humanTNF is now entering Phase III clinical trials as a 

systemic agent [http://clinicaltrials.gov, trial identifier NCT01098266].  In the case of 

inflammatory disease, targeting has proved effective in animal models such as collagen-induced 

arthritis, where the effects of IL-10 on paw swelling were significantly enhanced when coupled 

to an antibody designed to target inflamed joints41, 42. However to our knowledge few studies 

have explored the concept of targeted therapy in human RA.   

 

Our fusion proteins have half lives in the range of 30-60 minutes (Supplementary Methods and 

data not shown), comparable to that of free IL- 4 (12-19 mins43, 44).  Targeting extends retention 

specifically in the target tissue and we reason that non-retained protein would be quickly cleared 

from the circulation, reducing the potential for unwanted systemic effects.   

 

Previously, it has been problematic to isolate targeting peptides that bind their ligands with high 

affinity.  The results of this study confirm that it is possible to use multiples of cyclic peptides to 

enhance binding avidity and increase the period of retention in the microvasculature of synovial 

tissue.  Identifying the molecule that binds to the target peptide will be important in order to 

further develop other targeting moieties and also to improve our understanding at the molecular 

level of what makes the synovial microvasculature different from that at other tissues or organs. 
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Of extreme relevance and importance is the confirmation in this paper of the capacity of the 

SyETP constructs to deliver biologically active IL-4 in vivo in the target tissue, demonstrated by 

the enhanced phosphorylation of STAT6 in nuclear and cytoplasmic fractions of synovial graft 

tissue homogenate, providing strong functional evidence in support of the selective effectiveness 

of this therapeutic modality.  Physiologically, IL-4 acts rapidly and primarily through 

phosphorylation of STAT6 via binding to IL-4 receptors type I or II.  Both receptors are 

expressed on a wide range of cell types including macrophages, RASF and B cells which 

constitute a large percentage of the cells in RA synovial tissue.   Our data, therefore, demonstrate 

that not only are the peptides retaining IL-4 in the synovial tissue, but also that such retention 

results in enhanced local activation of IL-4 signaling pathways in vivo. Importantly, we 

demonstrated that the preferential activation in synovial grafts was not due to “hypo-

responsiveness” of skin grafts, as rIL-4 injected intra-graft induced STAT6 phosphorylation in 

both skin and synovial grafts, with an average increase slightly higher in skin grafts:  17 versus 

13 fold over PBS control respectively.   

 

In summary, we have shown that conjugation of multiple copies of a SyETP improves retention 

of IL-4 in transplanted, vascularised arthritic tissue and maintains bioactivity in vivo.  RA is a 

heterogenous disease and a diverse array of therapies may be required for effective treatment of 

this patient population.  As demonstrated here with the anti-inflammatory cytokine IL-4, 

targeting methodologies may help to improve the therapeutic window for treatment of RA when 

applied to currently used therapeutics as well as yet un-trialed novel conventional and/or biologic 

agents. Moreover, this work further confirms the unique role of the synovium/SCID chimera 

model for drug development in the context of target validation in human tissues prior to early 
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phase studies in patients. The opportunity to test mechanistic functionality in this model provides 

a solution to expensive and ethically problematic trials in humans. 
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Figure legends 

 

Figure 1: Biochemical characterization of the baculovirus expressed fusion proteins 

 (a) Schematic representation of the three fusion proteins consisting of IL-4 linked via an MMP 

cleavage site to (i) one (IL-4SP), (ii) three (IL-4TP) copies of a synovial endothelial targeting 

peptide (SyETP)  or (iii) three copies of a scrambled peptide (IL-4-TS). Multiple copies of 

SyETP or scrambled peptide were connected by helical linkers. Histidine tags were added to 

each fusion protein for the purpose of purification; (b) To confirm the MMP cleavage site was 

accessible and susceptible to cleavage, IL-4SP, IL-4TP and IL-4TS were incubated overnight 

with or without rMMP1 and immunoblotted for (i) IL-4 and (ii) anti-4xhis using appropriate 

antibodies. (c) IL-4 bioactivity pre- and post-incubation with MMP1 was determined by 

assessing the proliferative response of the IL-4 responsive cell line (TF-1) to increasing 

concentrations of IL-4TP and IL-4TS. Data represent mean and standard deviation of triplicate 

wells and are given in arbitrary luminescence units (RLU). The data is representative of two 

independent experiments. 

 

Figure 2 Synergistic effect of IL-lβ-and IL-4 on IL-lra secretion on human synoviocytes.  

Synoviocytes were incubated for 60 min with or without rhIL-4 or IL-4-fusion proteins: IL-4TP, 

IL-4TS or IL-4SP (as described in Fig 1a) before adding 10ng/ml IL-lβ and incubated for a 

further 72 h. The concentration of IL-1ra in culture supernatant was detected by ELISA.  Data 

represent the mean +/- SE obtained with synoviocytes from three patients.  The data is 

representative of three independent experiments. 
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Figure 3: Preferential accumulation of SyETP-IL-4 constructs in synovial but not in skin 

xenografts.   

SCID mice (seven per group) were grafted with both human synovium and skin on either side of 

the animal subcutaneously in a dorsal position distal to the shoulder joints.  A period of ten days 

was allowed for the grafts to vascularise.  Mice were then injected with iodinated IL-4 fusion 

proteins and imaged by nanoSPECT-CT for up to six hours. (a) The levels of radioactivity per 

mm3 of tissue in the two grafts were determined by Region of Interest analysis of the images and 

the ratio between the uptake in synovium and skin transplants calculated. The ratios are shown 

for IL-4-TP, IL-4-TS and IL-4-SP fusion proteins as described in Fig 1a.  (b) Representative 

image highlighting the graft on the back of the mouse. Data represent mean.± SE. 

 

Figure 4:  Synovial endothelial targeting peptide (SyETP)-linked IL-4 maintains functional 

bioactivity when delivered to synovial grafts in vivo 

SCID mice (2 per group) were grafted with two fragments (3-5 mm3) of human synovium (n=4) 

and two fragments (3-5 mm3) of human skin (n=4) subcutaneously.  The mice were left for ten 

days to allow for the grafts to establish and vascularise.  The mice were then injected i.v. with 

IL-4SP, IL-4TP, IL-4TS (as described in Fig 1a) or PBS.  An additional control group was 

represented by mice injected intra-graft (i.g.) with rIL-4.  The mice were sacrificed 45 minutes 

post-injection, the grafts harvested and the level of pSTAT6 in the nuclear and cytoplasmic 

fractions of the grafts determined by Western blot. (a)  Immunoblotting for pSTAT6 or total STAT6 

in the cytoplasmic fractions of synovial tissue stimulated in vitro by IL-4SP, IL-4TP, IL-4TS (as 

described in Fig 1a) or rIL-4. (b) Immunoblotting for pSTAT6 or total STAT6 in the cytoplasmic 

fractions of the grafts. (c) Fold increase in the ratio of pSTAT6: total STAT6 over the PBS 
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control.  Data represent mean ±SE and are representative of two independent experiments.  

Statistics are shown for IL-4SP vs IL-TS vs IL-4TP. 
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Materials and Methods 

 

Cells & Reagents 

Details in Supplementary Methods. 

 

Human tissue transplantation into SCID animals  

Human synovial tissue was obtained from patients undergoing joint replacement surgery. Control 

human skin was obtained from plastic surgery procedure. Informed consent was obtained prior to 

the use of these tissues: ethical approval was obtained from the local ethics committee.  Five-

week old Beige SCID CB-17 mice (Charles River City, country) were maintained under sterile 

conditions in individually ventilated cages.  All procedures were carried out in a sterile 

environment.  Synovium and skin were transplanted as previously described 29, 45   

 

Construction of fusion proteins 

Human IL-4 (hIL-4) cDNA was amplified by PCR (from a plasmid kindly provided by DNAX 

Corp, USA), using the primers CCCAAGCTTATGGGTCTCACCTCCCAACTGC and 

ATCTTTTCAGGAATTCGCTCGAACACTTTGAATATTTCTCTC to add HindIII and EcoRI 

sites to the 5’ and 3’ ends respectively.  After digestion with HindIII and partial digestion with 

EcoRI due to an endogenous EcoRI site, DNA of the appropriate size was purified by gel 

extraction and inserted into a pcDNA3 vector encoding an MMP-cleavable site25 flanked by 

EcoRI and NotI restriction sites.  Novel DNA sequences encoding one or three copies of a 

synovial homing peptide 22 and a C-terminal His-tag followed by an ApaI restriction site were 

synthesised by oligonucleotide annealing (Supplementary Methods) and inserted 3’ of the MMP-

cleavable sequence.  Full-length IL-4-SP (single peptide), IL4-TP (triple peptide) and IL-4-TS 
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(triple scrambled) cassettes flanked by HindIII and ApaI sites were then inserted into a 

pFASTBAC1 (Invitrogen) vector that had been modified by removal of the multiple cloning site 

(MCS) at the BamHI and HindIII sites and replacement with annealed oligonucleotides 

GATCCAAGGTACCACCGCCAAAGCTTACTAAGTTGGGCCCG (forward) and 

AGCTCGGGCCCAACTTAGTAAGCTTTGGCGGTGGTACCTTG (reverse).  Constructs were 

verified by DNA sequencing.   

 

Targeting-specificity of recombinant fusion proteins – imaging by NanoSPECT-CT 

All three fusion proteins were labelled with 125I (Supplementary Methods). Mice were injected 

i.v. with 100μl of the iodinated construct (100μg/ml) with a starting activity of approximately 

10MBq. At 0, 40, 90, 180 and 300 mins post-injection the mice were imaged using a 

NanoSPECT-CT animal scanner (Bioscan Inc.Washington DC, USA) as previously described 46. 

The animals were kept warm and were anaesthetised using 2% isoflurane for the duration of the 

scan. Helical SPECT images of the transplants were acquired in 20 projections over 30 minutes 

using the 4-headed camera with 4 x 9 (1.4mm) pinhole collimators. CT images were acquired in 

180 projections and 1000ms exposure time using a 45kVP X-ray source over 3 minutes. 

Radionuclide images were reconstructed using HiSPECT (Scivis GmbH) iterative reconstruction 

software and fused with CT images using proprietary InVivoScope (Bioscan) software. A three 

dimensional volume-of-interest was defined around each graft to calculate the volume and level 

of activity (MBq) within. Uptake was expressed as activity (MBq) per mm3 tissue.  Equipment 

and methodology used have been previously validated in this model 46.  

 

Detection of pSTAT6 in human tissue 
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Detection of phosphorylated-STAT6 in human tissue.  Five-week-old Beige SCID CB-17 mice 

(Charles River laboratories), 2 per group, were grafted with two pieces of human synovial tissue 

and two pieces of human skin as previously described29, 45.  Once the grafts had established, 

100µl of each of the fusion proteins (70µg/ml) or 100µl PBS were administered i.v. As a positive 

control, an additional group of mice was injected intra-graft with 50µl of rIL-4 (100ng/ml). The 

proteins were allowed to circulate for 45 minutes. The mice were then sacrificed, the grafts 

removed and the nuclear and cytoplasmic fractions were extracted using a NE-PER nuclear and 

cytoplasmic extraction reagents (ThermoScientific, Southend-on Sea, UK).  The proteins were 

quantified by BCA assay (Pierce, Cramlington, UK).  Whole cell lysates were normalized for 

their protein content, resolved by SDS-PAGE, and then transferred to nitrocellulose filters and 

immunoblotted with the indicated antibody: total STAT6; (s-20) and pSTAT6 (Tyr641), both at 

1μg/ml (Santa Cruz (Insight Biotechnology, Wembly UK). The gels were scanned and band 

intensity calculated using TotalLap v1. 10. The pSTAT6/STAT6 ratios were derived from the 

band intensities and then divided by the PBS value to obtain the fold increase over the PBS 

control.  The above method of detecting total STAT6 and pSTAT6 was also applied to synovial 

tissue samples stimulated in vitro.  

 

Statistical analysis 

All statistical analysis was performed using SPSS Statistics 17.0. One-way analysis of variance 

(ANOVA) was used when comparing more than two groups (non-parametric data underwent 

normal transformation). If the groups differed significantly from each other, a Tukey post-test 

was applied to determine where those differences lie. P values of less than 0.05 were considered 

significant. 
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