55 research outputs found

    Rotational response of two-component Bose-Einstein condensates in ring traps

    Get PDF
    We consider a two-component Bose-Einstein condensate in a ring trap in a rotating frame and show how to determine the response of such a configuration to being in a rotating frame via accumulation of a Sagnac phase. This may be accomplished through either population oscillations or the motion of spatial-density fringes. We explicitly include the effect of interactions via a mean-field description and study the fidelity of the dynamics relative to an ideal configuration

    Rydberg electrometry for optical lattice clocks

    Get PDF
    Electrometry is performed using Rydberg states to evaluate the quadratic Stark shift of the 5s2 1 S0-5s5p 3 P0 clock transition in strontium. By measuring the Stark shift of the highly excited 5s75d 1 D2 state using electromagnetically induced transparency, we characterize the electric field with sufficient precision to provide tight constraints on the systematic shift to the clock transition. Using the theoretically derived, and experimentally verified, polarizability for this Rydberg state, we can measure the residual field with an uncertainty well below 1Vm−1. This resolution allows us to constrain the fractional frequency uncertainty of the quadratic Stark shift of the clock transition to 2×10−20

    Tunable cw UV laser with <35 kHz absolute frequency instability for precision spectroscopy of Sr Rydberg states

    Get PDF
    We present a solid-state laser system that generates over 200 mW of continuous-wave, narrowband light, tunable from 316.3 nm – 317.7 nm and 318.0 nm – 319.3 nm. The laser is based on commercially available fiber amplifiers and optical frequency doubling technology, along with sum frequency generation in a periodically poled stoichiometric lithium tantalate crystal. The laser frequency is stabilized to an atomic-referenced high finesse optical transfer cavity. Using a GPS-referenced optical frequency comb we measure a long term frequency instability of < 35 kHz for timescales between 10−3 s and 103 s. As an application we perform spectroscopy of Sr Rydberg states from n = 37 – 81, demonstrating mode-hop-free scans of 24 GHz. In a cold atomic sample we measure Doppler-limited linewidths of 350 kHz

    Linking working memory and long-term memory: A computational model of the learning of new words

    Get PDF
    The nonword repetition (NWR) test has been shown to be a good predictor of children’s vocabulary size. NWR performance has been explained using phonological working memory, which is seen as a critical component in the learning of new words. However, no detailed specification of the link between phonological working memory and long-term memory (LTM) has been proposed. In this paper, we present a computational model of children’s vocabulary acquisition (EPAM-VOC) that specifies how phonological working memory and LTM interact. The model learns phoneme sequences, which are stored in LTM and mediate how much information can be held in working memory. The model’s behaviour is compared with that of children in a new study of NWR, conducted in order to ensure the same nonword stimuli and methodology across ages. EPAM-VOC shows a pattern of results similar to that of children: performance is better for shorter nonwords and for wordlike nonwords, and performance improves with age. EPAM-VOC also simulates the superior performance for single consonant nonwords over clustered consonant nonwords found in previous NWR studies. EPAM-VOC provides a simple and elegant computational account of some of the key processes involved in the learning of new words: it specifies how phonological working memory and LTM interact; makes testable predictions; and suggests that developmental changes in NWR performance may reflect differences in the amount of information that has been encoded in LTM rather than developmental changes in working memory capacity. Keywords: EPAM, working memory, long-term memory, nonword repetition, vocabulary acquisition, developmental change

    Probing Sub-Micron Forces by Interferometry of Bose-Einstein Condensed Atoms

    Full text link
    We propose a technique, using interferometry of Bose-Einstein condensed alkali atoms, for the detection of sub-micron-range forces. It may extend present searches at 1 micron by 6 to 9 orders of magnitude, deep into the theoretically interesting regime of 1000 times gravity. We give several examples of both four-dimensional particles (moduli), as well as higher-dimensional particles -- vectors and scalars in a large bulk-- that could mediate forces accessible by this technique.Comment: 32 pages, 5 figures, RevTeX4, expanded discussion of interactions, references added, to appear in PR

    A Comparison of Four Treatments for Generalized Convulsive Status Epilepticus

    Get PDF
    ABSTRACT Background and Methods Although generalized convulsive status epilepticus is a life-threatening emergency, the best initial drug treatment is uncertain. We conducted a five-year randomized, doubleblind, multicenter trial of four intravenous regimens: diazepam (0.15 mg per kilogram of body weight) followed by phenytoin (18 mg per kilogram), lorazepam (0.1 mg per kilogram), phenobarbital (15 mg per kilogram), and phenytoin (18 mg per kilogram). Patients were classified as having either overt generalized status epilepticus (defined as easily visible generalized convulsions) or subtle status epilepticus (indicated by coma and ictal discharges on the electroencephalogram, with or without subtle convulsive movements such as rhythmic muscle twitches or tonic eye deviation). Treatment was considered successful when all motor and electroencephalographic seizure activity ceased within 20 minutes after the beginning of the drug infusion and there was no return of seizure activity during the next 40 minutes. Analyses were performed with data on only the 518 patients with verified generalized convulsive status epilepticus as well as with data on all 570 patients who were enrolled. Results Three hundred eighty-four patients had a verified diagnosis of overt generalized convulsive status epilepticus. In this group, lorazepam was successful in 64.9 percent of those assigned to receive it, phenobarbital in 58.2 percent, diazepam and phenytoin in 55.8 percent, and phenytoin in 43.6 percent (P=0.02 for the overall comparison among the four groups). Lorazepam was significantly superior to phenytoin in a pairwise comparison (P=0.002). Among the 134 patients with a verified diagnosis of subtle generalized convulsive status epilepticus, no significant differences among the treatments were detected (range of success rates, 7.7 to 24.2 percent). In an intention-to-treat analysis, the differences among treatment groups were not significant, either among the patients with overt status epilepticus (P=0.12) or among those with subtle status epilepticus (P=0.91). There were no differences among the treatments with respect to recurrence during the 12- hour study period, the incidence of adverse reactions, or the outcome at 30 days. Conclusions As initial intravenous treatment for overt generalized convulsive status epilepticus, lorazepam is more effective than phenytoin. Although lorazepam is no more efficacious than phenobarbital or diazepam and phenytoin, it is easier to use. (N Engl J Med 1998;339:792-8.

    Probing new physics using Rydberg states of atomic hydrogen

    Get PDF
    We consider the role of high-lying Rydberg states of simple atomic systems such as 1H in setting constraints on physics beyond the standard model. We obtain highly accurate bound states energies for a hydrogen atom in the presence of an additional force carrier (the energy levels of the Hellmann potential). These results show that varying the size and shape of the Rydberg state by varying the quantum numbers provides a way to probe the range of new forces. By combining these results with the current state-of-the-art QED corrections, we determine a robust global constraint on new physics that includes all current spectroscopic data in hydrogen. Lastly, we show that improved measurements that fully exploit modern cooling and trapping methods as well as higher lying states could lead to a strong, statistically robust global constraint on new physics based on laboratory measurements only

    Two-Electron Excitation of an Interacting Cold Rydberg Gas

    Get PDF
    We report the creation of an interacting cold Rydberg gas of strontium atoms. We show that the excitation spectrum of the inner valence electron is sensitive to the interactions in the Rydberg gas, even though they are mediated by the outer Rydberg electron. By studying the evolution of this spectrum we observe density-dependent population transfer to a state of higher angular momentum l. We determine the fraction of Rydberg atoms transferred, and identify the dominant transfer mechanism to be l-changing electron-Rydberg collisions associated with the formation of a cold plasma

    Spectroscopy of strontium Rydberg states using electromagnetically induced transparency

    Get PDF
    We report on the all-optical detection of Rydberg states in an effusive atomic beam of strontium atoms using electromagnetically induced transparency (EIT). Using narrow-linewidth CW lasers we obtain an EIT linewidth of 5 MHz. To illustrate the high spectroscopic resolution offered by this method, we have measured isotope shifts of the 5s18d1D2 and 5s19s1S0 Rydberg states. This technique could be applied to high-resolution, non-destructive measurements of ultra-cold Rydberg gases and plasmas

    Intercombination effects in resonant energy transfer

    Get PDF
    We investigate the effect of intercombination transitions in excitation hopping processes such as those found in Förster resonance energy transfer. Taking strontium Rydberg states as our model system, the breakdown of LS coupling leads to weakly allowed transitions between Rydberg states of different spin quantum number. We show that the long-range interactions between two Rydberg atoms can be affected by these weakly allowed spin transitions, and the effect is greatest when there is a near degeneracy between the initial state and a state with a different spin quantum number. We also consider a case of four atoms in a spin chain and show that a spin impurity can resonantly hop along the chain. By engineering the many-body energy levels of the spin chain, the breakdown of LS coupling due to interelectronic effects in individual atoms can be mapped onto a spatial separation of the total spin and the total orbital angular momentum along the spin chain
    • …
    corecore