577 research outputs found

    Using local knowledge, hydrologic, and climate data to develop a driftwood harvest model in interior Alaska

    Get PDF
    Rural Alaskan residents are concerned that the character of the summer discharge in the Yukon River is changing, which is affecting their ability to harvest driftwood. The Yukon River flows northwesterly through British Columbia and the Yukon Territory before flowing southwest through Alaska. In most summers, residents of Tanana, Alaska harvest driftwood from the Yukon River during two different periods. Typically, driftwood accompanies high flows on the Yukon River associated with spring break‐up. A few weeks later, a second series of driftwood appears, associated with the “2nd rise,” which is reported to occur during early June. This study examines the nature of the differential timing of high flow events in the Yukon River. Many communities in interior Alaska have grown to rely upon driftwood as an important source of wood, which is used in construction, carving, and as a fuel source. Increasingly, villages in rural Alaska are trying to lessen their dependence upon expensive fossil fuels. To achieve this goal, a number of Alaskan villages have recently installed wood chip‐fired boilers to generate heat and/or electricity and additional boilers are slated to be installed in rural Alaska in the near future. These boilers are largely fed by driftwood, a cheap and easily processed wood source. Some Tanana residents have expressed concern that in recent years, driftwood was not readily available because the “2nd rise” flood event was absent. This is disconcerting for rural Alaskans that are becoming increasingly reliant upon the driftwood flows. Our goal is to determine if the perceived changes in driftwood availability are related to changes in river hydrology and if predicted changes in hydrology may affect driftwood flows and the livelihoods of rural Alaskans.NSF, Resilience and Adaptation Program, Water and Environmental Research Center, Alaska EPSCoR

    Using Local Knowledge, Hydrologic, and Climate Data to Develop a Driftwood Harvest Model in Interior Alaska

    Get PDF
    Many rural Alaska residents rely on harvested driftwood from the Yukon River for fuel and construction materials, however they have stated that the character of the summer discharge in the Yukon River is changing and affecting their ability to harvest this resource. We examined whether the perceived changes in driftwood availability are related to changes in river hydrology and how changes in hydrology may affect future driftwood flows and the livelihoods of rural Alaskans.IAB, NSF, RAP, WERC, Alaska APSCo

    Enabling quantitative data analysis through e-infrastructures

    Get PDF
    This paper discusses how quantitative data analysis in the social sciences can engage with and exploit an e-Infrastructure. We highlight how a number of activities which are central to quantitative data analysis, referred to as ‘data management’, can benefit from e-infrastructure support. We conclude by discussing how these issues are relevant to the DAMES (Data Management through e-Social Science) research Node, an ongoing project that aims to develop e-Infrastructural resources for quantitative data analysis in the social sciences

    Temporal, Spatial, and Genomic Analyses of Enterobacteriaceae Clinical Antimicrobial Resistance in Companion Animals Reveals Phenotypes and Genotypes of One Health Concern

    Get PDF
    BackgroundAntimicrobial resistance (AMR) is a globally important one health threat. The impact of resistant infections on companion animals, and the potential public health implications of such infections, has not been widely explored, largely due to an absence of structured population-level data.ObjectivesWe aimed to efficiently capture and repurpose antimicrobial susceptibility test (AST) results data from several veterinary diagnostic laboratories (VDLs) across the United Kingdom to facilitate national companion animal clinical AMR surveillance. We also sought to harness and genotypically characterize isolates of potential AMR importance from these laboratories.MethodsWe summarized AST results for 29,330 canine and 8,279 feline Enterobacteriaceae isolates originating from companion animal clinical practice, performed between April 2016 and July 2018 from four VDLs, with submissions from 2,237 United Kingdom veterinary practice sites.ResultsEscherichia coli (E. coli) was the most commonly isolated Enterobacteriaceae in dogs (69.4% of AST results, 95% confidence interval, CI, 68.7–70.0) and cats (90.5%, CI 89.8–91.3). Multi-drug resistance was reported in 14.1% (CI 13.5–14.8) of canine and 12.0% (CI 11.1–12.9) of feline E. coli isolates. Referral practices were associated with increased E. coli 3rd generation ≤ cephalosporin resistance odds (dogs: odds ratio 2.0, CI 1.2–3.4). We selected 95 E. coli isolates for whole genome analyses, of which seven belonged to sequence type 131, also carrying the plasmid-associated extended spectrum β-lactamase gene blaCTX–M–15. The plasmid-mediated colistin resistance gene mcr-9 was also identified for the first time in companion animals.ConclusionsLinking clinical AMR data with genotypic characterization represents an efficient means of identifying important resistance trends in companion animals on a national scale.</sec
    corecore