799 research outputs found

    Quantum field dynamics of the slow rollover in the linear delta expansion

    Get PDF
    We show how the linear delta expansion, as applied to the slow-roll transition in quantum mechanics, can be recast in the closed time-path formalism. This results in simpler, explicit expressions than were obtained in the Schr\"odinger formulation and allows for a straightforward generalization to higher dimensions. Motivated by the success of the method in the quantum-mechanical problem, where it has been shown to give more accurate results for longer than existing alternatives, we apply the linear delta expansion to four-dimensional field theory. At small times all methods agree. At later times, the first-order linear delta expansion is consistently higher that Hartree-Fock, but does not show any sign of a turnover. A turnover emerges in second-order of the method, but the value of attheturnoverislargerthatthatgivenbytheHartree−Fockapproximation.Basedonthiscalculation,andourexperienceinthecorrespondingquantum−mechanicalproblem,webelievethattheHartree−Fockapproximationdoesindeedunderestimatethevalueof at the turnover is larger that that given by the Hartree-Fock approximation. Based on this calculation, and our experience in the corresponding quantum-mechanical problem, we believe that the Hartree-Fock approximation does indeed underestimate the value of at the turnover. In subsequent applications of the method we hope to implement the calculation in the context of an expanding universe, following the line of earlier calculations by Boyanovsky {\sl et al.}, who used the Hartree-Fock and large-N methods. It seems clear, however, that the method will become unreliable as the system enters the reheating stage.Comment: 17 pages, 9 figures, revised version with extra section 4.2 including second order calculatio

    Dimensional Reduction in Non-Supersymmetric Theories

    Full text link
    It is shown that regularisation by dimensional reduction is a viable alternative to dimensional regularisation in non-supersymmetric theories.Comment: 13 pages, phyzzx, LTH 32

    MOUND LABORATORY PROGRESS REPORT FOR FEBRUARY 1963

    Full text link

    In-situ velocity imaging of ultracold atoms using slow--light

    Full text link
    The optical response of a moving medium suitably driven into a slow-light propagation regime strongly depends on its velocity. This effect can be used to devise a novel scheme for imaging ultraslow velocity fields. The scheme turns out to be particularly amenable to study in-situ the dynamics of collective and topological excitations of a trapped Bose-Einstein condensate. We illustrate the advantages of using slow-light imaging specifically for sloshing oscillations and bent vortices in a stirred condensate

    Clarifying Some Remaining Questions in the Anomaly Puzzle

    Full text link
    We discuss several points that may help to clarify some questions that remain about the anomaly puzzle in supersymmetric theories. In particular, we consider a general N=1 supersymmetric Yang-Mills theory. The anomaly puzzle concerns the question of whether there is a consistent way to put the R-current and the stress tensor in a single supercurrent, even though in the classical theory they are in the same supermultiplet. As is well known, the classically conserved supercurrent bifurcates into two supercurrents having different anomalies in the quantum regime. The most interesting result we obtain is an explicit expression for the lowest component of one of the two supercurrents in 4-dimensional spacetime, namely the supercurrent that has the energy-momentum tensor as one of its components. This expression for the lowest component is an energy-dependent linear combination of two chiral currents, which itself does not correspond to a classically conserved chiral current. The lowest component of the other supercurrent, namely, the R-current, satisfies the Adler-Bardeen theorem. The lowest component of the first supercurrent has an anomaly that we show is consistent with the anomaly of the trace of the energy-momentum tensor. Therefore, we conclude that there is no consistent way to put the R-current and the stress tensor in a single supercurrent in the quantized theory. We also discuss and try to clarify some technical points in the derivations of the two-supercurrents in the literature. These latter points concern the significance of infrared contributions to the NSVZ beta-function and the role of the equations of motion in deriving the two supercurrents.Comment: 22 pages, no figure. v2: minor changes. v3: sections re-organized. new subsections (IVA, IVB) added. references adde

    Transport in Coupled Quantum Dots: Kondo Effect Versus Anti-Ferromagnetic Correlation

    Full text link
    The interplay between the Kondo effect and the inter-dot magnetic interaction in a coupled-dot system is studied. An exact result for the transport properties at zero temperature is obtained by diagonalizing a cluster, composed by the double-dot and its vicinity, which is connected to leads. It is shown that the system goes continuously from the Kondo regime to an anti-ferromagnetic state as the inter-dot interaction is increased. The conductance, the charge at the dots and the spin-spin correlation are obtained as a function of the gate potential.Comment: 4 pages, 3 postscript figures. Submitted to PR

    The Fayet-Iliopoulos D-term and its renormalisation in softly-broken supersymmetric theories

    Get PDF
    We consider the renormalisation of the Fayet-Iliopoulos D-term in a softly-broken abelian supersymmetric theory, and calculate the associated beta-function through three loops. We show that there exists (at least through three loops) a renormalisation group invariant trajectory for the coefficient of the D-term, corresponding to the conformal anomaly solution for the soft masses and couplings.Comment: 30 pages, Revtex, 15 Figures. Minor changes, and inadvertent omission of author from this abstract correcte
    • …
    corecore