5,056 research outputs found
Thirteen; Stones Around the Fire; the Threshold: Myth and Discourse on the Genesis of Architecture
The number 13 reminds us of the other, that which is mysterious, beyond reason, unknown, and only suggested through myth. The number 13 is mystical because it marks such a significant point in the counting of things; therefore it is with 13 that the realm of the unknown starts - the realm where things must be counted to be valued
Appointment for Jacob Miller as ensign in Virginia\u27s militia. Signed by James Barbour, governor, 1814.
Miller is commissioned as Ensign of Company of Riflemen in the second Battalion of the thirteenth... Regiment seventh Brigade and third... Division of the said Militia of Virginia. Barbour signs as governor of Virginia.https://digitalcommons.wofford.edu/littlejohnmss/1180/thumbnail.jp
Association of Genetic Variants in NUDT15 with Thiopurine-Induced Myelosuppression in Patients with Inflammatory Bowel Disease
Funding Information: reported serving as a consultant for AbbVie UK; receiving honoraria from Falk and AbbVie UK; receiving grants from Crohn’s & Colitis UK and Tillott’s Pharmaceuticals; having a fellowship from the UK National Institute for Health Research; and receiving travel reimbursement from Merck Sharp & Dohme and Norgine. Dr Heap reported receiving travel reimbursement from AbbVie; and being a current employee of AbbVie and owning stock in the company. Dr Andersen reported receiving personal fees from Merck Sharp & Dohme and Janssen. Dr Ananthakrishnan reported receiving a grant from Pfizer; and receiving personal fees from Takeda. Dr Beaugerie reported receiving advisory board fees from Allergan, Janssen, and Pfizer; receiving a grant from Hospira; and receiving grants and honoraria from AbbVie, Merck Sharp & Dohme, Ferring, Takeda, and Tillott’s Pharmaceuticals. Dr Cummings reported receiving personal fees from AbbVie, Takeda, Biogen, Janssen, Merck Sharp & Dohme, Amgen, Hakim Pharmaceuticals, and Pfizer/Hospira; and receiving grants from Takeda, Biogen, AstraZeneca, and Pfizer/Hospira. Dr Halfvarson reported receiving personal fees from AbbVie, Hospira, Janssen, Medivir, Merck Sharp & Dohme, Pfizer, RenapharmaVifor, Takeda, Tillott’s Pharmaceuticals, Celgene, Sandoz, and Shire; and receiving grants from Janssen, Merck Sharp & Dohme, and Takeda. Dr Hart reported receiving advisory board fees from AbbVie, Atlantic, Bristol-Myers Squibb, Celltrion, Janssen, Merck Sharp & Dohme, Pfizer, Shire, and Takeda; receiving honoraria from Falk and Ferring; and receiving a grant from Takeda. Dr Irving reported receiving personal fees from Janssen, AbbVie, Takeda, Ferring, Pfizer, Lilly, Merck Sharp & Dohme, Samsung, and Sandoz; and receiving grants from Takeda and Merck Sharp & Dohme. Dr Lindsay reported receiving advisory board fees from Atlantic Health, AbbVie UK/global, Merck Sharp & Dohme, Shire UK, Vifor Pharma, Ferring International, Celltrion, Takeda, Napp, Pfizer, and Janssen; serving as a consultant for AbbVie UK/global, Takeda, and Pfizer; receiving grants from Shire UK, AbbVie UK/global, Warner Chilcott, Funding Information: Takeda, Hospira, Ferring International, and Merck Sharp & Dohme; receiving honoraria from Takeda, Cornerstones US, Tillott’s Pharmaceuticals, Napp, Shire International, Janssen, AbbVie, and Pfizer; and receiving travel reimbursement from AbbVie UK, Merck Sharp & Dohme, Warner Chilcott, Takeda, and Shire International. Dr McGovern reported receiving grants from the National Institutes of Health, Helmsley Charitable Trust, and Janssen; and serving as a consultant for Pfizer, Q Biologics, Cidara, Gilead, and Janssen. Dr Seksik reported receiving advisory board fees from Astellas; receiving honoraria from Takeda, AbbVie, and Ferring; and receiving grants from Merck Sharp & Dohme and Biocodex. Dr Sokol reported receiving grants from Biocodex, Danone, and BiomX; serving as a consultant for Enterome, Takeda, AbbVie, Roche, Amgen, Danone, BiomX, Ferring, Bristol-Myers Squibb, Astellas, Merck Sharp & Dohme, Novartis, Tillott’s Pharmaceuticals, and Biose; and being the co-founder of Nextbiotix. Dr Annese reported receiving advisory board fees from Takeda, AbbVie, and Medtronic; and receiving honoraria from Janssen, Takeda, AbbVie, and Medtronic. Dr Weersma reported receiving grants from Takeda, Ferring, and Tramedico; and receiving personal fees from AbbVie. Dr Goodhand reported receiving honoraria from Falk, AbbVie, and Shield Therapeutics. Dr Kennedy reported serving as a consultant for Falk; receiving honoraria from Falk, Allergan, Pharmacosmos, and Takeda; and being a deputy editor of Alimentary Pharmacology & Therapeutics. Dr Ahmad reported receiving unrestricted grants, advisory board fees, speaker honoraria, and support to attend international meetings from AbbVie, Merck Sharp & Dohme, Janssen, Takeda, Ferring, Tillott’s Pharmaceuticals, Ferring, Pfizer, Napp, Celltrion, and Hospira. No other disclosures were reported. Funding Information: Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California), Alistair McNair, PhD (Queen Elizabeth Hospital, London, UK), Anita Modi, MD (Luton and Dunstable University Hospital, Luton, UK), Kevin Monahan, PhD (West Middlesex University Hospital, Middlesex, UK), Alex Moran, MD (Northern Devon Healthcare Trust, Barnstaple, UK), Mary-Anne Morris, MD (Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK), Marianne Mortimore, MBBS (Mater Research Institute, University of Queensland, South Brisbane, Australia), Craig Mowat, MD (Ninewells Hospital, NHS Tayside, Dundee, UK), Rafeeq Muhammed, MD (Birmingham Children's Hospital, Birmingham, UK), Charles D. R. Murray, PhD (Royal Free Hospital, Royal Free London NHS Foundation Trust, London, UK), Hanlie Olivier (IBD Pharmacogenetics Group, University of Exeter, Exeter, UK), Timothy R. Orchard, DM (Imperial College Healthcare NHS Trust, London, UK), Simon Panter, MD (South Tyneside District Hospital, South Tyneside, UK), Vinod Patel, MBBS (Tameside and Glossop Integrated Care NHS Foundation Trust, Ashton-under-Lyne, UK), Rosemary Phillips, MD (Princess Alexandra Hospital, Essex, UK), Neeraj Prasad, MSc (Wrightington Hospital, Wrightington, UK), Cathryn Preston, MBChB (Bradford Royal Infirmary, Bradford, UK), Graham Radford-Smith, PhD (Royal Brisbane and Women’s Hospital, Brisbane, Australia), Praveen Rajasekhar, MD (Northumbria NHS Trust, Tyne and Wear, UK), Dipak Roy, PhD (Tameside and Glossop Integrated Care NHS Foundation Trust, Ashton-under-Lyne, UK), Rebecca Saich, PhD (Basingstoke and North Hampshire Hospital, Basingstoke, UK), Jack Satsangi, PhD (Western General Hospital, NHS Lothian, Edinburgh, UK), Stefan Schreiber, PhD (Kiel University, Kiel, Germany), Sandip Sen, MD (Royal Stoke University Hospital, Stoke-on-Trent, UK), Neil Shah, MD (Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK), Richard Shenderay, MBBS (Airedale NHS Foundation Trust, Keighley, UK), Acuth Shenoy, MD (Colchester Hospital University NHS Foundation Trust, Colchester, UK), James Shutt, DM (Dorset County Hospital NHS Foundation Trust, Dorchester, UK), Mark Silverberg, PhD (Mount Sinai Hospital, Toronto, Ontario, Canada), Alison Simmons, PhD (Oxford University Hospitals, Oxford, UK), Jonathan Simmons, DM (Royal Berkshire Hospital, Royal Berkshire NHS Foundation Trust, Reading, UK), Salil Singh, PhD (Bolton NHS Foundation Trust, Bolton, UK), Malcolm Smith, MBChB (Aberdeen Royal Infirmary, Aberdeen, UK), Mark Smith, MD (Shrewsbury and Telford Hospital NHS Trust, Shrewsbury, UK), Melissa Smith, MB (Royal Sussex County Hospital, Brighton, UK), Jonathon A. Snook, DPhil (Poole Hospital NHS Foundation Trust, Poole, UK), Sunil Sonwalker, MD (Calderdale Royal Hospital, Halifax, UK), Christine R. Stevens, PhD (Broad Institute, Harvard University, Cambridge, Massachusetts), Giacomo Sturniolo, PhD (Univerita di Padova, Padova, Italy), Sreedhar Subramanian, MD (Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, UK), Amanda Thomas, MBBS (Department of Gastroenterology, Royal Devon and Exeter Hospital NHS Foundation Trust, Exeter, UK), Mark Tighe, BM (Poole Hospital NHS Foundation Trust, Poole, UK), Franco Torrente, MD (Department of Gastroenterology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK), Mark Tremelling, MD (Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK), Epameinondas Tsianos, PhD (University Hospital of Ioannina, Ioannina, Greece), Deven Vani, MD (Mid Yorkshire Hospitals NHS Trust, Wakefield, UK), Alissa Walsh, MBBS (St Vincent’s Hospital, Sydney, Australia), Gillian Watermeyer, MBChB (Groote Schuur Hospital, Cape Town, South Africa), David Watts, MBChB (Forth Valley Royal Hospital, Larbert, UK), Gill Watts, MD (Wythenshawe Hospital, South Manchester, UK), Sean Weaver, PhD (Royal Bournemouth General Hospital, Bournemouth, UK), Emma Wesley, MBBS (Musgrove Park Hospital, Taunton and Somerset NHS Hospitals, Taunton, UK), Anne Willmott, MBChB (Leicester Royal Infirmary-Paediatric, Leicester, UK), Karen Yearsley, BM (Nevill Hall Hospital, Abergavenny, UK), Veena Zambar, MBBS (Leeds General Infirmary, Leeds, UK), and Sebastian Zeissig, MD (University Medical Center Schleswig-Hostein, Kiel, Germany). These individuals identified and recruited patient s to the study and provided comments on a draft of the manuscript. Funding Information: Adverse Events Consortium funded the sample collection and genotyping at the Broad Institute. The UK National Institute for Health Research provided research nurse support to facilitate recruitment at all UK research sites. Crohn’s & Colitis UK and forCrohns provided funding support and publicized this study to their members. The Exeter National Institute for Health Research Clinical Research Facility provided DNA storage and management. Institutional strategic support award WT097835MF from Wellcome Trust supported the management of the study. Samples from Cedars-Sinai were collected and processed through the MIRIAD biobank that was funded by grant P01DK046763 from the National Institutes of Health. Publisher Copyright: © 2019 American Medical Association. All rights reserved.IMPORTANCE Use of thiopurines may be limited by myelosuppression. TPMT pharmacogenetic testing identifies only 25% of at-risk patients of European ancestry. Among patients of East Asian ancestry, NUDT15 variants are associated with thiopurine-induced myelosuppression (TIM). OBJECTIVE To identify genetic variants associated with TIM among patients of European ancestry with inflammatory bowel disease (IBD). DESIGN, SETTING, AND PARTICIPANTS Case-control study of 491 patients affected by TIM and 679 thiopurine-tolerant unaffected patients who were recruited from 89 international sites between March 2012 and November 2015. Genome-wide association studies (GWAS) and exome-wide association studies (EWAS) were conducted in patients of European ancestry. The replication cohort comprised 73 patients affected by TIM and 840 thiopurine-tolerant unaffected patients. EXPOSURES Genetic variants associated with TIM. MAIN OUTCOMES AND MEASURES Thiopurine-induced myelosuppression, defined as a decline in absolute white blood cell count to 2.5 x 10(9)/L or less or a decline in absolute neutrophil cell count to 1.0 x 10(9)/L or less leading to a dose reduction or drug withdrawal. RESULTS Among 1077 patients (398 affected and 679 unaffected; median age at IBD diagnosis, 31.0 years [interquartile range, 21.2 to 44.1 years]; 540 [50%] women; 602 [56%] diagnosed as having Crohn disease), 919 (311 affected and 608 unaffected) were included in the GWAS analysis and 961 (328 affected and 633 unaffected) in the EWAS analysis. The GWAS analysis confirmed association of TPMT (chromosome 6, rs11969064) with TIM (30.5% [95/311] affected vs 16.4% [100/608] unaffected patients; odds ratio [OR], 2.3 [95% CI, 1.7 to 3.1], P = 5.2 x 10(-9)). The EWAS analysis demonstrated an association with an in-frame deletion in NUDT15 (chromosome 13, rs746071566) and TIM (5.8% [19/328] affected vs 0.2% [1/633] unaffected patients; OR, 38.2 [95% CI, 5.1 to 286.1], P = 1.3 x 10(-8)), which was replicated in a different cohort (2.7% [2/73] affected vs 0.2% [2/840] unaffected patients; OR, 11.8 [95% CI, 1.6 to 85.0], P = .03). Carriage of any of 3 coding NUDT15 variants was associated with an increased risk (OR, 27.3 [95% CI, 9.3 to 116.7], P = 1.1 x 10(-7)) of TIM, independent of TPMT genotype and thiopurine dose. CONCLUSIONS AND RELEVANCE Among patients of European ancestry with IBD, variants in NUDT15 were associated with increased risk of TIM. These findings suggest that NUDT15 genotyping may be considered prior to initiation of thiopurine therapy; however, further study including additional validation in independent cohorts is required.Peer reviewe
Elevated serum antibody responses to synthetic mycobacterial lipid antigens among UK farmers: an indication of exposure to environmental mycobacteria?
Background: mycobacterial cells contain complex mixtures of mycolic acid esters. These can be used as antigens recognised by antibodies in the serum of individuals with active tuberculosis, caused by Mycobacterium tuberculosis. In high burden populations, a significant number of false positives are observed; possibly these antigens are also recognised by antibodies generated by other mycobacterial infections, particularly ubiquitous ‘environmental mycobacteria’. This suggests similar responses may be observed in a low burden TB population, particularly in groups regularly exposed to mycobacteria. Methods: ELISA using single synthetic trehalose mycolates corresponding to major classes in many mycobacteria was used to detect antibodies in serum of individuals with no known mycobacterial infection, comprising farmers, abattoir workers, and rural and urban populations. Results: serum from four Welsh or Scottish cohorts showed lower (with some antigens significantly lower) median responses than those reported for TB negatives from high-burden TB populations, and significantly lower responses than those with active TB. A small fraction, particularly older farmers, showed strong responses. A second study examined BCG vaccinated and non-vaccinated farmers and non-farmers. Farmers gave significantly higher median responses than non-farmers with three of five antigens, while there was no significant difference between vaccinated or non-vaccinated for either farmer or non-farmer groups. Conclusions: this initial study shows that serodiagnosis with mycobacterial lipid antigens can detect antibodies in a population sub-group that is significantly exposed to mycobacteria, in an assay that is not interfered with by vaccination. Given the links between mycobacterial exposure and a range of immune system diseases, further understanding such responses may provide a new opportunity for monitoring public health and directing treatment
The Threat of Vector-Borne Diseases in Sierra Leone
Sierra Leone is vulnerable to a wide range of vector-borne diseases transmitted by mosquitoes, tsetse flies, black flies, and other vectors. Malaria, lymphatic filariasis, and onchocerciasis have posed the greatest threat and have received the most attention in terms of vector control and capacity for diagnosis. However, malaria infection rates remain high, and there is evidence of circulation of other vector-borne diseases, such as chikungunya and dengue, which may go undiagnosed and unreported. The limited understanding of the prevalence and transmission of these diseases restricts the capacity for predicting outbreaks, and impedes the planning of appropriate responses. We review the available literature and gather expert opinions from those working in the country to report on the status of vector-borne disease transmission and control in Sierra Leone, and present an assessment of the threats of these diseases. Our discussions highlight an absence of entomological testing for disease agents and the need for more investment in surveillance and capacity strengthening
Comparison of the effects of velocity-based vs. traditional resistance training methods on adaptations in strength, power, and sprint speed: A systematic review, meta-analysis, and quality of evidence appraisal
We estimated the effectiveness of using velocity feedback to regulate resistance training load on changes in muscle strength, power, and linear sprint speed in apparently healthy participants. Academic and grey literature databases were systematically searched to identify randomised trials that compared a velocity-based training intervention to a ‘traditional' resistance training intervention that did not use velocity feedback. Standardised mean differences (SMDs) were pooled using a random effects model. Risk of bias was assessed with the Risk of Bias 2 tool and the quality of evidence was evaluated using the GRADE approach. Four trials met the eligibility criteria, comprising 27 effect estimates and 88 participants. The main analyses showed trivial differences and imprecise interval estimates for effects on muscle strength (SMD 0.06, 95% CI −0.51–0.63; I2 = 42.9%; 10 effects from 4 studies; low-quality evidence), power (SMD 0.11, 95% CI −0.28–0.49; I2 = 13.5%; 10 effects from 3 studies; low-quality evidence), and sprint speed (SMD −0.10, 95% CI −0.72–0.53; I2 = 30.0%; 7 effects from 2 studies; very low-quality evidence). The results were robust to various sensitivity analyses. In conclusion, there is currently no evidence that VBT and traditional resistance training methods lead to different alterations in muscle strength, power, or linear sprint speed
Type Ia Supernova Nucleosynthesis: Metallicity-dependent Yields
Type Ia supernova explosions (SN Ia) are fundamental sources of elements for the chemical evolution of galaxies. They efficiently produce intermediate-mass (with Z between 11 and 20) and iron group elements - for example, about 70% of the solar iron is expected to be made by SN Ia. In this work, we calculate complete abundance yields for 39 models of SN Ia explosions, based on three progenitors - a 1.4 M ⊙ deflagration detonation model, a 1.0 M ⊙ double detonation model, and a 0.8 M ⊙ double detonation model - and 13 metallicities, with 22Ne mass fractions of 0, 1 × 10-7, 1 × 10-6, 1 × 10-5, 1 × 10-4, 1 × 10-3, 2 × 10-3, 5 × 10-3, 1 × 10-2, 1.4 × 10-2, 5 × 10-2, and 0.1, respectively. Nucleosynthesis calculations are done using the NuGrid suite of codes, using a consistent nuclear reaction network between the models. Complete tables with yields and production factors are provided online at Zenodo:Yields (https://doi.org/10.5281/zenodo.8060323). We discuss the main properties of our yields in light of the present understanding of SN Ia nucleosynthesis, depending on different progenitor mass and composition. Finally, we compare our results with a number of relevant models from the literature
- …