110,877 research outputs found

    An Equivalent Hermitian Hamiltonian for the non-Hermitian -x^4 Potential

    Full text link
    The potential -x^4, which is unbounded below on the real line, can give rise to a well-posed bound state problem when x is taken on a contour in the lower-half complex plane. It is then PT-symmetric rather than Hermitian. Nonetheless it has been shown numerically to have a real spectrum, and a proof of reality, involving the correspondence between ordinary differential equations and integral systems, was subsequently constructed for the general class of potentials -(ix)^N. For PT-symmetric but non-Hermitian Hamiltonians the natural PT metric is not positive definite, but a dynamically-defined positive-definite metric can be defined, depending on an operator Q. Further, with the help of this operator an equivalent Hermitian Hamiltonian h can be constructed. This programme has been carried out exactly for a few soluble models, and the first few terms of a perturbative expansion have been found for the potential m^2x^2+igx^3. However, until now, the -x^4 potential has proved intractable. In the present paper we give explicit, closed-form expressions for Q and h, which are made possible by a particular parametrization of the contour in the complex plane on which the problem is defined. This constitutes an explicit proof of the reality of the spectrum. The resulting equivalent Hamiltonian has a potential with a positive quartic term together with a linear term.Comment: New reference [10] added and discussed. Minor typographical correction

    State-of-the-art of turbofan engine noise control

    Get PDF
    The technology of turbofan engine noise reduction is surveyed. Specific topics discussed include: (1) new fans for low noise; (2) fan and core noise suppression; (3) turbomachinery noise sources; and (4) a new program for improving static noise testing of fans and engines

    Cosmic ray diffusion: Report of the Workshop in Cosmic Ray Diffusion Theory

    Get PDF
    A workshop in cosmic ray diffusion theory was held at Goddard Space Flight Center on May 16-17, 1974. Topics discussed and summarized are: (1) cosmic ray measurements as related to diffusion theory; (2) quasi-linear theory, nonlinear theory, and computer simulation of cosmic ray pitch-angle diffusion; and (3) magnetic field fluctuation measurements as related to diffusion theory

    A magnetic thrust action on small bodies orbiting a pulsar

    Full text link
    We investigate the electromagnetic interaction of a relativistic stellar wind with small bodies in orbit around the star. Based on our work on the theory of Alfv\'en wings to relativistic winds presented in a companion paper, we estimate the force exerted by the associated current system on orbiting bodies and evaluate the resulting orbital drift. This Alfv\'enic structure is found to have no significant influence on planets or smaller bodies orbiting a millisecond pulsar. %influence on the orbit of bodies around a millisecond pulsar. On the timescale of millions of years, it can however affect the orbit of bodies with a diameter of 100 kilometres around standard pulsars with a period P∼P \sim 1 s and a magnetic field B∼108B \sim 10^{8} T. Kilometer-sized bodies experience drastic orbital changes on a timescale of 10410^4 years.Comment: accepted for publication in "Astronomy and Astrophysics

    Study of advanced bladder technology, OF2 diborane Final report, 2 Sep. 1969 - 1 Jul. 1970

    Get PDF
    Development and characteristics of elastomeric materials for positive expulsion bladder
    • …
    corecore