1,687 research outputs found

    Testing a one-dimensional prescription of dynamical shear mixing with a two-dimensional hydrodynamic simulation

    Get PDF
    Context. The treatment of mixing processes is still one of the major uncertainties in 1D stellar evolution models. This is mostly due to the need to parametrize and approximate aspects of hydrodynamics in hydrostatic codes. In particular, the effect of hydrodynamic instabilities in rotating stars, for example, dynamical shear instability, evades consistent description. Aims. We intend to study the accuracy of the diffusion approximation to dynamical shear in hydrostatic stellar evolution models by comparing 1D models to a first-principle hydrodynamics simulation starting from the same initial conditions. Methods. We chose an initial model calculated with the stellar evolution code GENEC that is just at the onset of a dynamical shear instability but does not show any other instabilities (e.g., convection). This was mapped to the hydrodynamics code SLH to perform a 2D simulation in the equatorial plane. We compare the resulting profiles in the two codes and compute an effective diffusion coefficient for the hydro simulation. Results. Shear instabilities develop in the 2D simulation in the regions predicted by linear theory to become unstable in the 1D stellar evolution model. Angular velocity and chemical composition is redistributed in the unstable region, thereby creating new unstable regions. After a period of time, the system settles in a symmetric, steady state, which is Richardson stable everywhere in the 2D simulation, whereas the instability remains for longer in the 1D model due to the limitations of the current implementation in the 1D code. A spatially resolved diffusion coefficient is extracted by comparing the initial and final profiles of mean atomic mass. Conclusions. The presented simulation gives a first insight on hydrodynamics of shear instabilities in a real stellar environment and even allows us to directly extract an effective diffusion coefficient. We see evidence for a critical Richardson number of 0.25 as regions above this threshold remain stable for the course of the simulation

    Transport properties of Layer-Antiferromagnet CuCrS2: A possible thermoelectric material

    Full text link
    The electrical, thermal conductivity and Seebeck coefficient of the quenched, annealed and slowly cooled phases of the layer compound CuCrS2 have been reported between 15K to 300K. We also confirm the antiferromagnetic transition at 40K in them by our magnetic measurements between 2K and 300K. The crystal flakes show a minimum around 100K in their in-plane resistance behavior. For the polycrystalline pellets the resistivity depends on their flaky texture and it attains at most 10 to 20 times of the room temperature value at the lowest temperature of measurement. The temperature dependence is complex and no definite activation energy of electronic conduction can be discerned. We find that the Seebeck coefficient is between 200-450 microV/K and is unusually large for the observed resistivity values of between 5-100 mOhm-cm at room temperature. The figure of merit ZT for the thermoelectric application is 2.3 for our quenched phases, which is much larger than 1 for useful materials. The thermal conductivity K is mostly due to lattice conduction and is reduced by the disorder in Cu- occupancy in our quenched phase. A dramatic reduction of electrical and thermal conductivity is found as the antiferromagnetic transition is approached from the paramagnetic region, and K subsequently rises in the ordered phase. We discuss the transport properties as being similar to a doped Kondo-insulator

    Subcellular mRNA Localization Regulates Ribosome Biogenesis in Migrating Cells

    Get PDF
    Translation of ribosomal protein-coding mRNAs (RP-mRNAs) constitutes a key step in ribosome biogenesis, but the mechanisms that modulate RP-mRNA translation in coordination with other cellular processes are poorly defined. Here, we show that subcellular localization of RP-mRNAs acts as a key regulator of their translation during cell migration. As cells migrate into their surroundings, RP-mRNAs localize to the actin-rich cell protrusions. This localization is mediated by La-related protein 6 (LARP6), an RNA-binding protein that is enriched in protrusions. Protrusions act as hotspots of translation for RP-mRNAs, enhancing RP synthesis, ribosome biogenesis, and the overall protein synthesis in migratory cells. In human breast carcinomas, epithelial-to-mesenchymal transition (EMT) upregulates LARP6 expression to enhance protein synthesis and support invasive growth. Our findings reveal LARP6-mediated mRNA localization as a key regulator of ribosome biogenesis during cell migration and demonstrate a role for this process in cancer progression downstream of EMT

    Controlling a magnetic Feshbach resonance with laser light

    Full text link
    The capability to tune the strength of the elastic interparticle interaction is crucial for many experiments with ultracold gases. Magnetic Feshbach resonances are a tool widely used for this purpose, but future experiments would benefit from additional flexibility such as spatial modulation of the interaction strength on short length scales. Optical Feshbach resonances offer this possibility in principle, but suffer from fast particle loss due to light-induced inelastic collisions. Here we show that light near-resonant with a molecular bound-to-bound transition can be used to shift the magnetic field at which a magnetic Feshbach resonance occurs. This makes it possible to tune the interaction strength with laser light and at the same time induce considerably less loss than an optical Feshbach resonance would do

    Rh discrepancies caused by variable reactivity of partial and weak D types with different serologic techniques

    Full text link
    RhD discrepancies between current and historical results are problematic to resolve. The investigation of 10 discrepancies is reported here. STUDY DESIGN: Samples identified were those that reacted by automated gel technology and were negative with an FDA-approved reagent. Reactivity with a commercially available panel of monoclonal anti-D was performed. Genomic DNA was evaluated for RHD alleles with multiplex RHD exon polymerase chain reaction (PCR), weak D PCR-restriction fragment length polymorphism, and RHD exon 5 and 7 sequence analyses. RESULTS: The monoclonal anti-D panel identified two samples as DVa, yet possessed the DAR allele. Two weak D Type 1 samples had a similar monoclonal anti-D profile, but only one reacted directly with one of two FDA-approved anti-D. Only two of four weak D Type 2 samples reacted directly with one FDA-approved anti-D, and their D epitope profile differed. CONCLUSIONS: The monoclonal anti-D reagents did not distinguish between partial and weak D Types 1 and 2. Weak D Types 1 and 2 do not show consistent reactivity with FDA-approved reagents and technology. To limit anti-D alloimmunization, it is recommended that samples yielding an immediate-spin tube test cutoff score of not more than 5 (i.e., ≤1+ agglutination) or a score of not more than 8 (i.e., ≤2+ hemagglutination) by gel technology be considered D– for transfusion and Rh immune globulin prophylaxis. That tube test anti-D reagents react poorly with some Weak D Types 1 and 2 red cells is problematic, inasmuch as they should be considered D+ for transfusion and prenatal care. Molecular tests that distinguish common partial and Weak D types provide the solution to resolving D antigen discrepancies.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75591/1/j.1537-2995.2007.01551.x.pd

    Elastase levels and activity are increased in dystrophic muscle and impair myoblast cell survival, proliferation and differentiation

    Get PDF
    In Duchenne muscular dystrophy, progressive loss of muscle tissue is accompanied by fibrosis, chronic inflammation and reduced muscle regenerative capacity. Although much is known about the development of fibrosis and chronic inflammation in muscular dystrophy, less is known about how they are mechanistically linked to loss of muscle regenerative capacity. We have developed a proteomics method to discover dystrophy-associated changes in the muscle progenitor cell niche, which identified serine proteases, and especially neutrophil elastase, as candidates. We show that elastase activity is increased in dystrophic (mdx(4cv)) muscle and impairs myoblast survival in culture. While the effect of elastase on C2C12 cell survival correlates with the kinetics of elastase-mediated degradation of the substrate to which the cells adhere, the effect of elastase on satellite cell-derived primary myoblast growth and differentiation is substrate-independent and even more dramatic than the effect on C2C12 cells, suggesting a detrimental role for elastase on myogenesis in vivo. Additionally, elastase impairs differentiation of both primary and C2C12 myoblasts into myotubes. Our findings evidence the importance of neutrophil-mediated inflammation in muscular dystrophy and indicate elastase-mediated regulation of myoblast behaviour as a potential mechanism underlying loss of regenerative capacity in dystrophic muscle

    Three-dimensional jamming and flows of soft glassy materials

    Get PDF
    Various disordered dense systems such as foams, gels, emulsions and colloidal suspensions, exhibit a jamming transition from a liquid state (they flow) to a solid state below a yield stress. Their structure, thoroughly studied with powerful means of 3D characterization, exhibits some analogy with that of glasses which led to call them soft glassy materials. However, despite its importance for geophysical and industrial applications, their rheological behavior, and its microscopic origin, is still poorly known, in particular because of its nonlinear nature. Here we show from two original experiments that a simple 3D continuum description of the behaviour of soft glassy materials can be built. We first show that when a flow is imposed in some direction there is no yield resistance to a secondary flow: these systems are always unjammed simultaneously in all directions of space. The 3D jamming criterion appears to be the plasticity criterion encountered in most solids. We also find that they behave as simple liquids in the direction orthogonal to that of the main flow; their viscosity is inversely proportional to the main flow shear rate, as a signature of shear-induced structural relaxation, in close similarity with the structural relaxations driven by temperature and density in other glassy systems.Comment: http://www.nature.com/nmat/journal/v9/n2/abs/nmat2615.htm

    Syndecan-3 regulates MSC adhesion, ERK and AKT signalling in vitro and its deletion enhances MSC efficacy in a model of inflammatory arthritis in vivo

    Get PDF
    Rheumatoid arthritis (RA) is a debilitating and painful inflammatory autoimmune disease characterised by the accumulation of leukocytes in the synovium, cartilage destruction and bone erosion. The immunomodulatory effects of bone marrow derived mesenchymal stem cells (MSCs) has been widely studied and the recent observations that syndecan-3 (SDC3) is selectively pro-inflammatory in the joint led us to hypothesise that SDC3 might play an important role in MSC biology. MSCs isolated from bone marrow of wild type and Sdc3-/- mice were used to assess immunophenotype, differentiation, adhesion and migration properties and cell signalling pathways. While both cell types show similar differentiation potential and forward scatter values, the cell complexity in wild type MSCs was significantly higher than in Sdc3-/- cells and was accompanied by lower spread surface area. Moreover, Sdc3-/- MSCs adhered more rapidly to collagen type I and showed a dramatic increase in AKT phosphorylation, accompanied by a decrease in ERK1/2 phosphorylation compared with control cells. In a mouse model of antigen-induced inflammatory arthritis, intraarticular injection of Sdc3-/- MSCs yielded enhanced efficacy compared to injection of wild type MSCs. In conclusion, our data suggest that syndecan-3 regulates MSC adhesion and efficacy in inflammatory arthritis, likely via induction of the AKT pathway

    Differential Regulation of the Period Genes in Striatal Regions following Cocaine Exposure

    Get PDF
    Several studies have suggested that disruptions in circadian rhythms contribute to the pathophysiology of multiple psychiatric diseases, including drug addiction. In fact, a number of the genes involved in the regulation of circadian rhythms are also involved in modulating the reward value for drugs of abuse, like cocaine. Thus, we wanted to determine the effects of chronic cocaine on the expression of several circadian genes in the Nucleus Accumbens (NAc) and Caudate Putamen (CP), regions of the brain known to be involved in the behavioral responses to drugs of abuse. Moreover, we wanted to explore the mechanism by which these genes are regulated following cocaine exposure. Here we find that after repeated cocaine exposure, expression of the Period (Per) genes and Neuronal PAS Domain Protein 2 (Npas2) are elevated, in a somewhat regionally selective fashion. Moreover, NPAS2 (but not CLOCK (Circadian Locomotor Output Cycles Kaput)) protein binding at Per gene promoters was enhanced following cocaine treatment. Mice lacking a functional Npas2 gene failed to exhibit any induction of Per gene expression after cocaine, suggesting that NPAS2 is necessary for this cocaine-induced regulation. Examination of Per gene and Npas2 expression over twenty-four hours identified changes in diurnal rhythmicity of these genes following chronic cocaine, which were regionally specific. Taken together, these studies point to selective disruptions in Per gene rhythmicity in striatial regions following chronic cocaine treatment, which are mediated primarily by NPAS2. © 2013 Falcon et al

    From Nonspecific DNA–Protein Encounter Complexes to the Prediction of DNA–Protein Interactions

    Get PDF
    ©2009 Gao, Skolnick. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.doi:10.1371/journal.pcbi.1000341DNA–protein interactions are involved in many essential biological activities. Because there is no simple mapping code between DNA base pairs and protein amino acids, the prediction of DNA–protein interactions is a challenging problem. Here, we present a novel computational approach for predicting DNA-binding protein residues and DNA–protein interaction modes without knowing its specific DNA target sequence. Given the structure of a DNA-binding protein, the method first generates an ensemble of complex structures obtained by rigid-body docking with a nonspecific canonical B-DNA. Representative models are subsequently selected through clustering and ranking by their DNA–protein interfacial energy. Analysis of these encounter complex models suggests that the recognition sites for specific DNA binding are usually favorable interaction sites for the nonspecific DNA probe and that nonspecific DNA–protein interaction modes exhibit some similarity to specific DNA–protein binding modes. Although the method requires as input the knowledge that the protein binds DNA, in benchmark tests, it achieves better performance in identifying DNA-binding sites than three previously established methods, which are based on sophisticated machine-learning techniques. We further apply our method to protein structures predicted through modeling and demonstrate that our method performs satisfactorily on protein models whose root-mean-square Ca deviation from native is up to 5 Å from their native structures. This study provides valuable structural insights into how a specific DNA-binding protein interacts with a nonspecific DNA sequence. The similarity between the specific DNA–protein interaction mode and nonspecific interaction modes may reflect an important sampling step in search of its specific DNA targets by a DNA-binding protein
    • …
    corecore