8,776 research outputs found

    Design of an Advanced Inlet Liner for the Quiet Technology Demonstrator 3

    Get PDF
    The utilization of advanced fan designs (including higher bypass ratios) and shorter engine nacelles has highlighted a need for increased fan noise reduction over a broad frequency range. Thus, improved broadband liner designs must account for these constraints and take advantage of novel liner configurations. With these observations in mind, the development and assessment of a broadband acoustic liner optimization process has been pursued through a series of design and experimental studies. In this work, an advanced inlet liner was designed for a Boeing 737MAX-7 to reduce drag and to improve the broadband noise reduction relative to conventional liners in use today. Specifically, a three layer liner was designed, fabricated, and flight tested as part of the Quiet Technology Demonstrator 3 flight test program. Initial tonal predictions captured the behavior of the measured data very well and both prediction and measurements show an increased acoustic benefit at larger observer angles, particularly at the takeoff condition. Ultimately, flight test results showed the three degree-of-freedom liner to provide a 3.2 EPNdB cumulative inlet component benefit and a 0.7 EPNdB cumulative airplane benefit over the production liner. This excellent result provides valuable validation of the broadband liner design process, as well as the enhancements made to the overall approach. It also illustrates the value of the design process in concurrently evaluating various liner designs (i.e., SDOF, MDOF, etc.) and their application to various locations. Thus, the design process may be applied with further confidence to investigate novel liner configurations in future design studies

    An Investigation of Bifurcation Acoustic Treatment Effects on Aft-Fan Engine Nacelle Noise

    Get PDF
    Increasing air traffic and more stringent aircraft noise regulations continue to expand requirements on aircraft noise reduction capabilities for conventional and unconventional aircraft configurations. A major component of the overall aircraft noise is the sound associated with the propulsion system mounted in the engine nacelle. Acoustic liners mounted in the aircraft engine nacelles provide a significant portion of the current fan noise reduction. However, they must be further optimized if challenging noise reduction goals are to be achieved. One area within the aft bypass duct that may be an excellent candidate for increased attention is the acoustic treatment on the engine bifurcations (i.e., engine pylon and lower bifurcation). This paper describes a fundamental study of the effects of bifurcation treatment on simulated aft fan noise, as well as the validation of numerical tools to predict such effects. Five bifurcation configurations (four treated and one hardwall) were fabricated and tested in the NASA Langley Curved Duct Test Rig. Results show that mode scattering may occur due to both the presence of the bifurcation, as well as variable impedance distributions on the bifurcation surface. Future work will also include optimization of bifurcation treatments for testing in the Curved Duct Test Rig. These initial results are promising and this work provides valuable information for further study and improvement of the performance of bifurcation acoustic treatments

    Assessment of Axial Wave Number and Mean Flow Uncertainty on Acoustic Liner Impedance Education

    Get PDF
    A key parameter in designing and assessing advanced broadband acoustic liners to achieve the current and future noise reduction goals is the acoustic impedance presented by the liner. This parameter, intrinsic to a specific liner configuration, is dependent on sound pressure level and grazing flow velocity. Current impedance eduction approaches have, in general, provided excellent results and continue to be employed throughout the acoustic liner community. However, some recent applications have indicated a possible dependence of the educed impedance on the direction of incident waves relative to the mean flow. The purpose of the current study is to investigate this unexpected behavior for various impedance eduction methods based on the Pridmore-Brown and convected Helmholtz equations. Specifically, the effects of flow profile and axial wavenumber uncertainties on educed impedances for upstream and downstream sources are investigated. The uniform flow results demonstrate the importance of setting a correct Mach number value in obtaining consistent educed impedances for upstream and downstream sources. In fact, the consistency of results over the two source locations was greatly improved by a slight modification of the uniform flow Mach number. In addition, uncertainty in educed axial wavenumber was also illustrated to correlate well with differences in the educed impedances, even with modified uniform flow Mach number. Finally, while less straightforward than in the uniform flow case, it appears that modification of the mean flow profile may also improve consistency of results for upstream and downstream results when shear flow is included

    Broadband Liner Optimization for the Source Diagnostic Test Fan

    Get PDF
    The broadband component of fan noise has grown in relevance with the utilization of increased bypass ratio and advanced fan designs. Thus, while the attenuation of fan tones remains paramount, the ability to simultaneously reduce broadband fan noise levels has become more appealing. This paper describes a broadband acoustic liner optimization study for the scale model Source Diagnostic Test fan. Specifically, in-duct attenuation predictions with a statistical fan source model are used to obtain optimum impedance spectra over a number of flow conditions for three liner locations in the bypass duct. The predicted optimum impedance information is then used with acoustic liner modeling tools to design liners aimed at producing impedance spectra that most closely match the predicted optimum values. Design selection is based on an acceptance criterion that provides the ability to apply increased weighting to specific frequencies and/or operating conditions. Typical tonal liner designs targeting single frequencies at one operating condition are first produced to provide baseline performance information. These are followed by multiple broadband design approaches culminating in a broadband liner targeting the full range of frequencies and operating conditions. The broadband liner is found to satisfy the optimum impedance objectives much better than the tonal liner designs. In addition, the broadband liner is found to provide better attenuation than the tonal designs over the full range of frequencies and operating conditions considered. Thus, the current study successfully establishes a process for the initial design and evaluation of novel broadband liner concepts for complex engine configurations

    Communal Sensor Network for Adaptive Noise Reduction in Aircraft Engine Nacelles

    Get PDF
    Emergent behavior, a subject of much research in biology, sociology, and economics, is a foundational element of Complex Systems Science and is apropos in the design of sensor network systems. To demonstrate engineering for emergent behavior, a novel approach in the design of a sensor/actuator network is presented maintaining optimal noise attenuation as an adaptation to changing acoustic conditions. Rather than use the conventional approach where sensors are managed by a central controller, this new paradigm uses a biomimetic model where sensor/actuators cooperate as a community of autonomous organisms, sharing with neighbors to control impedance based on local information. From the combination of all individual actions, an optimal attenuation emerges for the global system

    Flight Test Methodology for NASA Advanced Inlet Liner on 737MAX-7 Test Bed (Quiet Technology Demonstrator 3)

    Get PDF
    This paper describes the acoustic flight test results of an advanced nacelle inlet acoustic liner concept designed by NASA Langley, in a campaign called Quiet Technology Demonstrator 3 (QTD3). NASA has been developing multiple acoustic liner concepts to benefit acoustics with multiple-degrees of freedom (MDOF) honeycomb cavities, and lower the excrescence drag. Acoustic and drag performance were assessed at a lab-scale, flow duct level in 2016. Limitations of the lab-scale rig left open-ended questions regarding the in-flight acoustic performance. This led to a joint project to acquire acoustic flyover data with this new liner technology built into full scale inlet hardware containing the NASA MDOF Low Drag Liner. Boeing saw an opportunity to collect the acoustic flyover data on the 737 MAX-7 between certification tests at no impact to the overall program schedule, and successfully executed within the allotted time. The flight test methodology and the test configurations are detailed and the acoustic analysis is summarized in this paper. After the tone and broadband deltas associated with the inlet hardware were separated and evaluated, the result was a significant decrease in cumulative EPNL (Effective Perceived Noise Level)

    Acoustic Phased Array Quantification of Quiet Technology Demonstrator 3 Advanced Inlet Liner Noise Component

    Get PDF
    Acoustic phased array flyover noise measurements were acquired as part of the Boeing 737 MAX-7 NASA Advanced Inlet Liner segment of the Quiet Technology Demonstrator 3 (QTD3) flight test program. This paper reports on the processes used for separating and quantifying the engine inlet, exhaust and airframe noise source components and provides sample phased array-based comparisons of the component noise source levels associated with the inlet liner treatment configurations. Full scale flyover noise testing of NASA advanced inlet liners was conducted as part of the Quiet Technology Demonstrator 3 flight test program in July and August of 2018. Details on the inlet designs and testing are provided in the companion paper of Reference 1. The present paper provides supplemental details relating to the acoustic phased array portion of the analyses provided in Ref. 1. In brief, the test article was a Boeing 737MAX-7 aircraft with a modified right hand (starboard side) engine inlet, which consisted of either a production inlet liner, a NASA designed inlet liner or a simulated hard wall configuration (accomplished by applying speed tape over the inlet acoustic treatment areas). In all three configurations, the engine forward fan case acoustic panel was replaced with a unperforated (hardwall) panel. No other modifications to any other acoustic treatment areas were made. The left hand (port side) engine was a production engine and was flown at idle thrust for all measurements in order to isolate the effects of the inlet liners to the right hand engine. As described in Ref. 1, the NASA inlet treatment consists of laterally cut slots (cut perpendicular to the flow direction) which are designed to reduce excrescence drag while maintaining or exceeding the liner acoustic noise reduction capabilities. The NASA inlet liner consists of a Multi-Degree of Freedom (MDOF) design with two breathable septum layers inserted into each honeycomb cell [1]. The aircraft noise measurements were acquired for both takeoff (flaps 1 setting, gear up) and approach (flaps 30 gear up and gear down) configurations. The inlet and flight test configurations are summarized in Table 1. Table 1: Inlet Treatment and Flight Configurations Inlet Forward Fan Case Aircraft Production Hardwall Flaps 1, gear up; flaps 30 gear up; flaps 30 gear down NASA Hardwall Flaps 1, gear up; flaps 30 gear up; flaps 30 gear down Hardwall Hardwall Flaps 1, gear up; flaps 30 gear up; flaps 30 gear down III.Test Description and Hardware The flight testing was conducted at the Grant County airport in Moses Lake, WA, between 27 July and 6 August 2018. The noise measurement instrumentation included 8 flush dish microphones arranged in a noise certification configuration as well as an 840 microphone phased array. The flush dish microphones were used to quantify the levels and differences in levels between the various inlet treatments. The phased array was used to separate and quantify the narrowband (tonal) and broadband noise component levels from the engine inlet/exhaust and from the airframe. Phased array extraction of the broadband component was critical to this study because it allowed for the separation of the inlet component from the total airplane level noise even when it was significantly below the total level. Figure 1 provides an overview of the phased array microphone layout as well as a detailed image of an individual phased array microphone mounted in a plate holder (the microphone sensor is the dot in the center of the plate). The ground plane ensemble array microphones (referred to as ensemble array in this paper) were mounted in plates with flower petal edges designed to minimize edge scattering effects. Fig. 1 Flyover test microphone layout. The phased array configuration was the result of a progressive development of concepts originally implemented in Ref. 2 and refined over the following years, consisting namely of multiple multi-arm logarithmic spiral subarrays designed to cover overlapping frequency ranges and optimized for various aircraft emission angles. For the present case, the signals from all 840 microphones were acquired on a single system. The 840 microphones were parsed into 11 primary subarray sets spanning from smallest to largest aperture size and labeled accordingly as a, b, , k, where a corresponds to the smallest fielded subarray and k corresponds to the largest aperture subarray. The apertures ranged from approximately 10 ft to 427 ft in size (in the flight direction) with the subarrays consisting of between 215 and 312 microphones. Figure 2 shows three such subarrays, k, h and a. As done in Ref. 2, microphones were shared between subarrays in order to reduce total channel count. Fig. 2 Sample subarray sizes (20 from overhead refer to Figure 3a discussion). In addition to the above, each of the 11 primary subarray sets consisted of four subarrays optimized to provide near equivalent array spatial resolution in both the flight and lateral directions within 30 degrees of overhead (i.e., airplane directly above the center of the array), namely, at angles of 0, 10, 20 and 30 degrees relative to overhead where angle is defined as shown in Figure 3a. This allowed for optimized aircraft noise measurements from 60 to 120 degree emission angle.6 An example of this pletharray design is shown in Figure 3b for the k subarray. When the aircraft is at overhead, the microphones indicated by the blue markers are used for beamforming. When the aircraft is at angles 10 degrees from overhead, both the blue and red colored microphones are used, and so on for the 20 and 30 degree aircraft locations. See Ref. 3 for extensive details on pletharray design for aeroacoustic phased array testing. 6 In the discussions that follow, emission angle values are used. These are the angles at the time sound is emitted relative to the engine axis and are calculated based on flight path angle, body aircraft body angle with respect to the relative wind direction, and engine axis angle relative to aircraft body angle

    Emergent Adaptive Noise Reduction from Communal Cooperation of Sensor Grid

    Get PDF
    In the last decade, the realization of small, inexpensive, and powerful devices with sensors, computers, and wireless communication has promised the development of massive sized sensor networks with dense deployments over large areas capable of high fidelity situational assessments. However, most management models have been based on centralized control and research has concentrated on methods for passing data from sensor devices to the central controller. Most implementations have been small but, as it is not scalable, this methodology is insufficient for massive deployments. Here, a specific application of a large sensor network for adaptive noise reduction demonstrates a new paradigm where communities of sensor/computer devices assess local conditions and make local decisions from which emerges a global behaviour. This approach obviates many of the problems of centralized control as it is not prone to single point of failure and is more scalable, efficient, robust, and fault toleran

    Effects of Flow Profile on Educed Acoustic Liner Impedance

    Get PDF
    This paper presents results of an investigation of the effects of shear flow profile on impedance eduction processes employed at NASA Langley. Uniform and 1-D shear-flow propagation models are used to educe the acoustic impedance of three test liners based on aeroacoustic data acquired in the Langley Grazing Flow Impedance Tube, at source levels of 130, 140 and 150 dB, and at centerline Mach numbers of 0.0, 0.3 and 0.5. A ceramic tubular, calibration liner is used to evaluate the propagation models, as this liner is expected to be insensitive to SPL, grazing flow Mach number, and flow profile effects. The propagation models are then used to investigate the effects of shear flow profile on acoustic impedances educed for two conventional perforate-over-honeycomb liners. Results achieved with the uniform-flow models follow expected trends, but those educed with the 1-D shear-flow model do not, even for the calibration liner. However, when the flow profile used with the shear-flow model is varied to increase the Mach number gradient near the wall, results computed with the shear-flow model are well matched to those achieved with the uniform-flow model. This indicates the effects of flow profile on educed acoustic liner impedance are small, but more detailed investigations of the flow field throughout the duct are needed to better understand these effects

    Adaptive genomic structural variation in the grape powdery mildew pathogen, Erysiphe necator.

    Get PDF
    BackgroundPowdery mildew, caused by the obligate biotrophic fungus Erysiphe necator, is an economically important disease of grapevines worldwide. Large quantities of fungicides are used for its control, accelerating the incidence of fungicide-resistance. Copy number variations (CNVs) are unbalanced changes in the structure of the genome that have been associated with complex traits. In addition to providing the first description of the large and highly repetitive genome of E. necator, this study describes the impact of genomic structural variation on fungicide resistance in Erysiphe necator.ResultsA shotgun approach was applied to sequence and assemble the genome of five E. necator isolates, and RNA-seq and comparative genomics were used to predict and annotate protein-coding genes. Our results show that the E. necator genome is exceptionally large and repetitive and suggest that transposable elements are responsible for genome expansion. Frequent structural variations were found between isolates and included copy number variation in EnCYP51, the target of the commonly used sterol demethylase inhibitor (DMI) fungicides. A panel of 89 additional E. necator isolates collected from diverse vineyard sites was screened for copy number variation in the EnCYP51 gene and for presence/absence of a point mutation (Y136F) known to result in higher fungicide tolerance. We show that an increase in EnCYP51 copy number is significantly more likely to be detected in isolates collected from fungicide-treated vineyards. Increased EnCYP51 copy numbers were detected with the Y136F allele, suggesting that an increase in copy number becomes advantageous only after the fungicide-tolerant allele is acquired. We also show that EnCYP51 copy number influences expression in a gene-dose dependent manner and correlates with fungal growth in the presence of a DMI fungicide.ConclusionsTaken together our results show that CNV can be adaptive in the development of resistance to fungicides by providing increasing quantitative protection in a gene-dosage dependent manner. The results of this work not only demonstrate the effectiveness of using genomics to dissect complex traits in organisms with very limited molecular information, but also may have broader implications for understanding genomic dynamics in response to strong selective pressure in other pathogens with similar genome architectures
    corecore