19 research outputs found

    Localisation of NMU1R and NMU2R in human and rat central nervous system and effects of neuromedin-U following central administration in rats

    Get PDF
    Rationale: Neuromedin-U (NmU) is an agonist at NMU1R and NMU2R. The brain distribution of NmU and its receptors, in particular NMU2R, suggests widespread central roles for NmU. In agreement, centrally administered NmU affects feeding behaviour, energy expenditure and pituitary output. Further central nervous system (CNS) roles for NmU warrant investigation. Objectives: To investigate the CNS role of NmU by mapping NMU1R and NMU2R mRNA and measuring the behavioural, endocrine, neurochemical and c-fos response to intracerebroventricular (i.c.v.) NmU. Methods: Binding affinity and functional potency of rat NmU was determined at human NMU1R and NMU2R. Expression of NMU1R and NMU2R mRNA in rat and human tissue was determined using semi-quantitative reverse-transcription polymerase chain reaction. In in-vivo studies, NmU was administered i.c.v. to male Sprague-Dawley rats, and changes in grooming, motor activity and pre-pulse inhibition (PPI) were assessed. In further studies, plasma endocrine hormones, [DOPAC + HVA]/[dopamine] and [5-HIAA]/[5-HT] ratios and levels of Fos-like immunoreactivity (FLI) were measured 20 min post-NmU (i.c.v.). Results: NmU bound to NMU1R (KI, 0.11±0.02 nM) and NMU2R (KI, 0.21±0.05 nM) with equal affinity and was equally active at NMU1R (EC50, 1.25±0.05 nM) and NMU2R (EC50, 1.10±0.20 nM) in a functional assay. NMU2R mRNA expression was found at the highest levels in the CNS regions of both rat and human tissues. NMU1R mRNA expression was restricted to the periphery of both species with the exception of the rat amygdala. NmU caused a marked increase in grooming and motor activity but did not affect PPI. Further, NmU decreased plasma prolactin but did not affect levels of corticosterone, luteinising hormone or thyroid stimulating hormone. NmU elevated levels of 5-HT in the frontal cortex and hypothalamus, with decreased levels of its metabolites in the hippocampus and hypothalamus, but did not affect dopamine function. NmU markedly increased FLI in the nucleus accumbens, frontal cortex and central amygdala. Conclusions: These data provide further evidence for widespread roles for NmU and its receptors in the brain

    Planet Populations as a Function of Stellar Properties

    Full text link
    Exoplanets around different types of stars provide a window into the diverse environments in which planets form. This chapter describes the observed relations between exoplanet populations and stellar properties and how they connect to planet formation in protoplanetary disks. Giant planets occur more frequently around more metal-rich and more massive stars. These findings support the core accretion theory of planet formation, in which the cores of giant planets form more rapidly in more metal-rich and more massive protoplanetary disks. Smaller planets, those with sizes roughly between Earth and Neptune, exhibit different scaling relations with stellar properties. These planets are found around stars with a wide range of metallicities and occur more frequently around lower mass stars. This indicates that planet formation takes place in a wide range of environments, yet it is not clear why planets form more efficiently around low mass stars. Going forward, exoplanet surveys targeting M dwarfs will characterize the exoplanet population around the lowest mass stars. In combination with ongoing stellar characterization, this will help us understand the formation of planets in a large range of environments.Comment: Accepted for Publication in the Handbook of Exoplanet

    Pharmacological Fingerprints of Contextual Uncertainty

    Get PDF
    Successful interaction with the environment requires flexible updating of our beliefs about the world. By estimating the likelihood of future events, it is possible to prepare appropriate actions in advance and execute fast, accurate motor responses. According to theoretical proposals, agents track the variability arising from changing environments by computing various forms of uncertainty. Several neuromodulators have been linked to uncertainty signalling, but comprehensive empirical characterisation of their relative contributions to perceptual belief updating, and to the selection of motor responses, is lacking. Here we assess the roles of noradrenaline, acetylcholine, and dopamine within a single, unified computational framework of uncertainty. Using pharmacological interventions in a sample of 128 healthy human volunteers and a hierarchical Bayesian learning model, we characterise the influences of noradrenergic, cholinergic, and dopaminergic receptor antagonism on individual computations of uncertainty during a probabilistic serial reaction time task. We propose that noradrenaline influences learning of uncertain events arising from unexpected changes in the environment. In contrast, acetylcholine balances attribution of uncertainty to chance fluctuations within an environmental context, defined by a stable set of probabilistic associations, or to gross environmental violations following a contextual switch. Dopamine supports the use of uncertainty representations to engender fast, adaptive responses. \ua9 2016 Marshall et al

    The effects of CRF antagonists, antalarmin, CP154,526, LWH234, and R121919, in the forced swim test and on swim-induced increases in adrenocorticotropin in rats

    Full text link
    Exposure to extreme stress has been suggested to produce long-term, detrimental alterations in the hypothalamic–pituitary–adrenal (HPA) axis leading to the development of mental disorders such as depression. Therefore, compounds that block the effects of stress hormones were investigated as potential therapeutics for depression.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46365/1/213_2005_Article_2164.pd

    Differential effects of systemically administered nor-binaltorphimine (nor-BNI) on Îș-opioid agonists in the mouse writhing assay

    Full text link
    The opioid antagonist effects of systemically administered nor-binaltorphimine (nor-BNI) were evaluated against the kappa agonists CI-977, U69,593, U50,488, ethylketocyclazocine (EKC), Mr2034 and bremazocine, the mu agonist morphine and the alkaloid delta agonist BW-373U86 in the acetic acid-induced writhing assay in mice. All eight agonists completely and dose-dependently inhibited writhing. Antagonism of CI-977 was apparent 1 h after administration of 32 mg/kg nor-BNI, peaking after 4 h and was maintained for at least 4 weeks; no antagonist effects of nor-BNI were apparent after 8 weeks. Nor-BNI (32 mg/kg) caused little or no antagonism of morphine or BW-373U86 at 1 h and none at 24 h after nor-BNI administration. Subsequently, dose-effect curves for CI-977, U50,488, U69,593, EKC, Mr2034 and bremazocine were determined 24 h after pretreatment with 3.2, 10 and 32 mg/kg nor-BNI. Pretreatment with 3.2 mg/kg nor-BNI produced significant antagonism of all six kappa agonists, suggesting that their antinociceptive effects were mediated at least in part by nor-BNI-sensitive kappa receptors. At higher doses, nor-BNI dose-depend-ently shifted the agonist dose-effect curves of CI-977, U50,488, U69,593 and bremazocine, but not those of EKC and Mr2034, suggesting that the latter compounds may be producing effects via nor-BNI-insensitive receptors. Mu receptor involvement was demonstrated following a 24 h pretreatment with 32 mg/kg ÎČ -FNA in combination with nor-BNI, which significantly increased the degree of antagonism of Mr2034 and EKC from that seen with nor-BNI alone. Hence, SC administered nor-BNI selectively antagonized agonist activity mediated through kappaopioid receptors without differentiating between kappa subtypes. Nor-BNI also enabled the mu agonist activity of proposed kappa agonists to be measured.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46343/1/213_2005_Article_BF02245071.pd

    5-HT<sub>6</sub> receptor antagonists improve performance in an attentional set shifting task in rats

    No full text
    Rationale and objective: Performance on the Wisconsin Card Sorting Test (WCST), which requires patients to 'shift attention' between stimulus dimensions (sorting categories), is impaired in diseases such as schizophrenia. The rat attentional set shifting task is an analogue of the WCST. Given that 5-HT6 receptor antagonists improve cognitive performance and influence cortical neurochemistry in rats, the present study investigated the effects of 5-HT6 receptor antagonists upon attentional set shifting in rats. Methods: Rats were tested in this paradigm following sub-chronic SB-399885-T or SB-271046-A (both 10 mg kg(-1) bid, p.o. for 8 days prior to testing and either 4 or 2 h prior to testing on day 9, respectively). Rats were trained to dig in baited bowls for a food reward and to discriminate based on odour or digging media (Habituation, day 8). In a single session (day 9), rats performed a series of discriminations, including reversals (REV), intra-dimensional (ID) and extra-dimensional (ED) shifts. Results: Neither compound altered performance during Habituation. On the test day, both SB-399885-T and SB-271046-A reduced the total trials to reach criterion and the total errors made when data were collapsed across all discriminations (P &lt; 0.050.01). Further, both compounds significantly reduced the trials to criterion for REV-1 (P &lt; 0.05-0.01) and abolished the ID/ED shift. SB-399885-T, but not SB-271046-A, reduced trials required to complete the ED shift (P &lt; 0.05) and the number of errors made during completion of the ID (P &lt; 0.05) and ED shifts (P &lt; 0.01). Conclusion: 5-HT6 receptor antagonists improved performance in the attentional set shifting task and may have therapeutic potential in the treatment of disorders where cognitive deficits are a feature, including schizophrenia.</p

    5-HT<sub>6</sub> receptor antagonists improve performance in an attentional set shifting task in rats

    No full text
    Rationale and objective: Performance on the Wisconsin Card Sorting Test (WCST), which requires patients to 'shift attention' between stimulus dimensions (sorting categories), is impaired in diseases such as schizophrenia. The rat attentional set shifting task is an analogue of the WCST. Given that 5-HT6 receptor antagonists improve cognitive performance and influence cortical neurochemistry in rats, the present study investigated the effects of 5-HT6 receptor antagonists upon attentional set shifting in rats. Methods: Rats were tested in this paradigm following sub-chronic SB-399885-T or SB-271046-A (both 10 mg kg(-1) bid, p.o. for 8 days prior to testing and either 4 or 2 h prior to testing on day 9, respectively). Rats were trained to dig in baited bowls for a food reward and to discriminate based on odour or digging media (Habituation, day 8). In a single session (day 9), rats performed a series of discriminations, including reversals (REV), intra-dimensional (ID) and extra-dimensional (ED) shifts. Results: Neither compound altered performance during Habituation. On the test day, both SB-399885-T and SB-271046-A reduced the total trials to reach criterion and the total errors made when data were collapsed across all discriminations (P &lt; 0.050.01). Further, both compounds significantly reduced the trials to criterion for REV-1 (P &lt; 0.05-0.01) and abolished the ID/ED shift. SB-399885-T, but not SB-271046-A, reduced trials required to complete the ED shift (P &lt; 0.05) and the number of errors made during completion of the ID (P &lt; 0.05) and ED shifts (P &lt; 0.01). Conclusion: 5-HT6 receptor antagonists improved performance in the attentional set shifting task and may have therapeutic potential in the treatment of disorders where cognitive deficits are a feature, including schizophrenia.</p
    corecore