11 research outputs found

    Nickel Exposure Reduces Enterobactin Production in Escherichia Coli

    Get PDF
    Escherichia coli is a well- studied bacterium that can be found in many niches, such as industrial wastewater, where the concentration of nickel can rise to low- millimolar levels. Recent studies show that nickel exposure can repress pyochelin or induce pyo-verdine siderophore production in Pseudomonas aueroginosa. Understanding the mo-lecular cross- talk between siderophore production, metal homeostasis, and metal toxicity in microorganisms is critical for designing bioremediation strategies for metal- contaminated sites. Here, we show that high- nickel exposure prolongs lag phase duration as a result of low- intracellular iron levels in E. coli. Although E. coli cells respond to low- intracellular iron during nickel stress by maintaining high expres-sion of iron uptake systems such as fepA, the demand for iron is not met due to a lack of siderophores in the extracellular medium during nickel stress. Taken together, these results indicate that nickel inhibits iron accumulation in E. coli by reducing the presence of enterobactin in the extracellular medium

    Nickel Exposure Reduces Enterobactin Production in \u3cem\u3eEscherichia coli\u3c/em\u3e

    Get PDF
    Escherichia coli is a well- studied bacterium that can be found in many niches, such as industrial wastewater, where the concentration of nickel can rise to low- millimolar levels. Recent studies show that nickel exposure can repress pyochelin or induce pyo-verdine siderophore production in Pseudomonas aueroginosa. Understanding the mo-lecular cross- talk between siderophore production, metal homeostasis, and metal toxicity in microorganisms is critical for designing bioremediation strategies for metal- contaminated sites. Here, we show that high- nickel exposure prolongs lag phase duration as a result of low- intracellular iron levels in E. coli. Although E. coli cells respond to low- intracellular iron during nickel stress by maintaining high expres-sion of iron uptake systems such as fepA, the demand for iron is not met due to a lack of siderophores in the extracellular medium during nickel stress. Taken together, these results indicate that nickel inhibits iron accumulation in E. coli by reducing the presence of enterobactin in the extracellular medium. Escherichia coli is a well- studied bacterium that can be found in many niches, such as industrial wastewater, where the concentration of nickel can rise to low-millimolar levels. Recent studies show that nickel exposure can repress pyochelin or induce pyo- verdine siderophore production inPseudomonas aueroginosa. Understanding the mo- lecular cross-talk between siderophore production, metal homeostasis, and metal toxicity in microorganisms is critical for designing bioremediation strategies for metal-contaminated sites. Here, we show that high-nickel exposure prolongs lag phase duration as a result of low- intracellular iron levels in E. coli. Although E. coli cells respond to low- intracellular iron during nickel stress by maintaining high expres- sion of iron uptake systems such as fepA, the demand for iron is not met due to a lack of siderophores in the extracellular medium during nickel stress. Taken together, these results indicate that nickel inhibits iron accumulation inE. coli by reducing the presence of enterobactin inthe extracellular mediu

    Nickel exposure reduces enterobactin production in Escherichia coli

    Get PDF
    Abstract Escherichia coli is a well‐studied bacterium that can be found in many niches, such as industrial wastewater, where the concentration of nickel can rise to low‐millimolar levels. Recent studies show that nickel exposure can repress pyochelin or induce pyoverdine siderophore production in Pseudomonas aueroginosa. Understanding the molecular cross‐talk between siderophore production, metal homeostasis, and metal toxicity in microorganisms is critical for designing bioremediation strategies for metal‐contaminated sites. Here, we show that high‐nickel exposure prolongs lag phase duration as a result of low‐intracellular iron levels in E. coli. Although E. coli cells respond to low‐intracellular iron during nickel stress by maintaining high expression of iron uptake systems such as fepA, the demand for iron is not met due to a lack of siderophores in the extracellular medium during nickel stress. Taken together, these results indicate that nickel inhibits iron accumulation in E. coli by reducing the presence of enterobactin in the extracellular medium

    Tribology of confined Fomblin-Z perfluoropolyalkyl ethers: Role of chain-end chemical functionality

    No full text
    Strong dependence of the tribological response upon the nature of the polar end groups of perfluorinated linear chains was observed for Fomblin-Z perfluoropolyalkyl ethers of similar length and composition but terminated by a different polar group at both chain ends. The number-average molecular weight of the polymers was M-n approximate to 2000 g mol(-1) and the chain-end functionality was either carboxylic acid, hydroxyl, piperonyl, or the p-phenoxyanilinium salt of a carboxylic acid. The method of investigation was a surface forces apparatus modified for dynamic oscillatory shear at variable frequency and effective shear rate. Differences were observed as concerns not only the shear forces but also the minimum thickness to which the films could be compressed under a given normal load and the adhesion measured on separation of the surfaces after prior compression. The shear forces were studied at normal pressures of 1 and 3 MPa, both in the linear viscoelastic regime and at high shear amplitudes corresponding to shear rates of 10(-2)-10(5) s(-1). The carboxylic acid terminated polymer displayed solidlike responses to shear, possibly reflecting dimerization owing to hydrogen bonding. This contrasted with the more fluidlike shear rheology of the hydroxyl- and piperonyl-terminated polymers, in which the association from hydrogen bonding and polar interactions is believed to be weaker and result in a different structure. The sample comprised of the p-phenoxyanilinium salt of a carboxylic acid could not be compressed to less than an exceptionally large film thickness, around 100 Angstrom, and did not appear to solidify at the pressures studied. This study suggests that not only the affinity of the functionalized chain ends to a solid surface but also the self-association of polar end groups in the nonpolar environment of fluorinated chains influences the lubricating performance of these films

    Rate-dependent adhesion between opposed perfluoropoly(alkyl ether) layers: Dependence on chain-end functionality and chain length

    No full text
    Adhesion was measured repeatedly between opposed molecularly thin layers of perfluoropoly(alkyl ether)s on mica, with particular attention to the dependence of the adhesion on chain-end functionality and chain length of the polymer. The polymer layers were kept in contact for specified times that differed by 4 orders of magnitude (0.01-500 s) and then unloaded (separated) at rates that varied by 5 orders of magnitude (0.003-120 mu m/s of a detachment device with spring constant 1.1 x 10(4) N/m) using a modified surface forces apparatus with piezoelectric actuators supporting one surface. Rate dependence resulting in an increase of the adhesion by a factor up to 3 was observed when the unloading rate exceeded a critical value that was found to depend not only on the polymer sample but also on the contact time between opposed layers. At a given unloading rate, the adhesion was larger, the longer the surfaces were left in stationary contact before separation. No history dependence was observed when the unloading rate was raised and subsequently lowered. For relatively short contact times (0.01-1 a), the critical unloading rate was larger for the polymer that contained polar end groups than for unfunctionalized polymer of similar chain length, indicating a lower mobility in the former case, and thus slower initial interdigitation of the chains, since the polar end group had a preferential affinity for the underlying surface. This effect vanished for contact times of 100-500 s. For polymer chains without polar end groups, the critical value of the unloading rate was smaller, the larger the chain length, and the increase in adhesion with unloading rate was more pronounced, presumably reflecting slower relaxation of the longer chains. The rate dependence is analyzed quantitatively

    Polymer interfaces on a molecular scale: Comparison of techniques and some examples

    No full text
    corecore