1,181 research outputs found

    A role for human N-alpha acetyltransferase 30 (Naa30) in maintaining mitochondrial integrity

    Get PDF
    N-terminal acetylation (Nt-acetylation) by N-terminal acetyltransferases (NATs) is one of the most common protein modifications in eukaryotes. The NatC complex represents one of three major NATs of which the substrate profile remains largely unexplored. Here, we defined the in vivo human NatC Nt-acetylome on a proteome-wide scale by combining knockdown of its catalytic subunit Naa30 with positional proteomics. We identified 46 human NatC substrates, expanding our current knowledge on the substrate repertoire of NatC which now includes proteins harboring Met-Leu, Met-Ile, Met-Phe, Met-Trp, Met-Val, Met-Met, Met-His and Met-Lys N termini. Upon Naa30 depletion the expression levels of several organellar proteins were found reduced, in particular mitochondrial proteins, some of which were found to be NatC substrates. Interestingly, knockdown of Naa30 induced the loss of mitochondrial membrane potential and fragmentation of mitochondria. In conclusion, NatC N-tacetylates a large variety of proteins and is essential for mitochondrial integrity and function

    Photo-assisted Andreev reflection as a probe of quantum noise

    No full text
    19 pages, 11 figuresAndreev reflection, which corresponds to the tunneling of two electrons from a metallic lead to a superconductor lead as a Cooper pair (or vice versa), can be exploited to measure high frequency noise. A detector is proposed, which consists of a normal lead--superconductor circuit, which is capacitively coupled to a mesoscopic circuit where noise is to be measured. We discuss two detector circuits: a single normal metal -- superconductor tunnel junction and a normal metal separated from a superconductor by a quantum dot operating in the Coulomb blockade regime. A substantial DC current flows in the detector circuit when an appropriate photon is provided or absorbed by the mesoscopic circuit, which plays the role of an environment for the junction to which it couples. Results for the current can be cast in all cases in the form of a frequency integral of the excess noise of the environment weighted by a kernel which is specific to the transport process (quasiparticle tunneling, Andreev reflection,...) which is considered. We apply these ideas to the measurement of the excess noise of a quantum point contact and we provide numerical estimates of the detector current

    Critical temperature oscillations in magnetically coupled superconducting mesoscopic loops

    Full text link
    We study the magnetic interaction between two superconducting concentric mesoscopic Al loops, close to the superconducting/normal phase transition. The phase boundary is measured resistively for the two-loop structure as well as for a reference single loop. In both systems Little-Parks oscillations, periodic in field are observed in the critical temperature Tc versus applied magnetic field H. In the Fourier spectrum of the Tc(H) oscillations, a weak 'low frequency' response shows up, which can be attributed to the inner loop supercurrent magnetic coupling to the flux of the outer loop. The amplitude of this effect can be tuned by varying the applied transport current.Comment: 9 pages, 7 figures, accepted for publication in Phys. Rev.

    Fermionic Mach-Zehnder interferometer subject to a quantum bath

    Full text link
    We study fermions in a Mach-Zehnder interferometer, subject to a quantum-mechanical environment leading to inelastic scattering, decoherence, renormalization effects, and time-dependent conductance fluctuations. Both the loss of interference contrast as well as the shot noise are calculated, using equations of motion and leading order perturbation theory. The full dependence of the shot-noise correction on setup parameters, voltage, temperature and the bath spectrum is presented. We find an interesting contribution due to correlations between the fluctuating renormalized phase shift and the output current, discuss the limiting behaviours at low and high voltages, and compare with simpler models of dephasing.Comment: 5 pages, 3 figure

    Detection of Naegleria Species in Environmental Samples from Peninsular Malaysia

    Get PDF
    In Malaysia, researchers and medical practitioners are unfamiliar with Naegleria infections. Thus little is known about the existence of pathogenic Naegleria fowleri, and the resultant primary amoebic meningoencephalitis (PAM) is seldom included in the differential diagnosis of central nervous system infections. This study was conducted to detect the presence of Naegleria species in various environmental samples.A total of 41 Naegleria-like isolates were isolated from water and dust samples. All these isolates were subjected to PCR using two primer sets designed from the ITS1-ITS2 regions. The N. fowleri species-specific primer set failed to produce the expected amplicon. The Naegleria genus-specific primers produced amplicons of 408 bp (35), 450 bp (2), 457 bp (2) or 381 bp (2) from all 41 isolates isolated from aquatic (33) and dust (8) samples. Analysis of the sequences from 10 representative isolates revealed that amplicons with fragments 408, 450 and 457 bp showed homology with non-pathogenic Naegleria species, and 381 bp showed homology with Vahlkampfia species. These results concurred with the morphological observation that all 39 isolates which exhibited flagella were Naegleria, while 2 isolates (AC7, JN034055 and AC8, JN034056) that did not exhibit flagella were Vahlkampfia species.To date, pathogenic species of N. fowleri have not been isolated from Malaysia. All 39 isolates that produced amplicons (408, 450 and 457 bp) from the genus-specific primers were identified as being similar to nonpathogenic Naegleria. Amplicon 408 bp from 5 representative isolates showed 100% and 99.7% identity to Naegleria philippinensis isolate RJTM (AM167890) and is thus believed to be the most common species in our environment. Amplicons 450 bp and 457 bp were respectively believed to be from 2 new species of Naegleria, since representative isolates showed lower homology and had a longer base pair length when compared to the reference species in the Genbank, Naegleria schusteri (AJ566626) and Naegleria laresi (AJ566630), respectively

    Giant vortex state in perforated aluminum microsquares

    Full text link
    We investigate the nucleation of superconductivity in a uniform perpendicular magnetic field H in aluminum microsquares containing a few (2 and 4) submicron holes (antidots). The normal/superconducting phase boundary T_c(H) of these structures shows a quite different behavior in low and high fields. In the low magnetic field regime fluxoid quantization around each antidot leads to oscillations in T_c(H), expected from the specific sample geometry, and reminiscent of the network behavior. In high magnetic fields, the T_c(H) boundaries of the perforated and a reference non-perforated microsquare reveal cusps at the same values of Phi/Phi_0 (where Phi is the applied flux threading the total square area and Phi_0 is the superconducting flux quantum), while the background on T_c(H) becomes quasi-linear, indicating that a giant vortex state is established. The influence of the actual geometries on T_c(H) is analyzed in the framework of the linearized Ginzburg-Landau theory.Comment: 14 pages, 6 PS figures, RevTex, accepted for publication in Phys. Rev.

    Large Faraday rotation of resonant light in a cold atomic cloud

    Get PDF
    We experimentally studied the Faraday rotation of resonant light in an optically-thick cloud of laser-cooled rubidium atoms. Measurements yield a large Verdet constant in the range of 200 000 degrees/T/mm and a maximal polarization rotation of 150 degrees. A complete analysis of the polarization state of the transmitted light was necessary to account for the role of the probe laser's spectrum
    corecore