1,935 research outputs found

    Fleming-Viot selects the minimal quasi-stationary distribution: The Galton-Watson case

    Full text link
    Consider N particles moving independently, each one according to a subcritical continuous-time Galton-Watson process unless it hits 0, at which time it jumps instantaneously to the position of one of the other particles chosen uniformly at random. The resulting dynamics is called Fleming-Viot process. We show that for each N there exists a unique invariant measure for the Fleming-Viot process, and that its stationary empirical distribution converges, as N goes to infinity, to the minimal quasi-stationary distribution of the Galton-Watson process conditioned on non-extinction.Comment: 25 page

    Cooper pair splitting in a nanoSQUID geometry at high transparency

    Full text link
    We describe a Josephson device composed of two superconductors separated by two interacting quantum dots in parallel, as a probe for Cooper pair splitting. In addition to sequential tunneling of electrons through each dot, an additional transport channel exists in this system: crossed Andreev reflection, where a Cooper pair from the source is split between the two dots and recombined in the drain superconductor. Unlike non-equilibrium scenarios for Cooper pair splitting which involves superconducting/normal metal "forks", our proposal relies on an Aharonov-Bohm measurement of the DC Josephson current when a flux is inserted between the two dots. We provide a path integral approach to treat arbitrary transparencies, and we explore all contributions for the individual phases (00 or π\pi) of the quantum dots. We propose a definition of the Cooper pair splitting efficiency for arbitrary transparencies, which allows us to find the phase associations which favor the crossed Andreev process. Possible applications to experiments using nanowires as quantum dots are discussed.Comment: 12 pages, 13 figure

    Hanbury Brown and Twiss noise correlations in a topological superconductor beam splitter

    Full text link
    We study Hanbury-Brown and Twiss current cross-correlations in a three-terminal junction where a central topological superconductor (TS) nanowire, bearing Majorana bound states at its ends, is connected to two normal leads. Relying on a non-perturbative Green function formalism, our calculations allow us to provide analytical expressions for the currents and their correlations at subgap voltages, while also giving exact numerical results valid for arbitrary external bias. We show that when the normal leads are biased at voltages V1V_1 and V2V_2 smaller than the gap, the sign of the current cross-correlations is given by -\mbox{sgn}(V_1 \, V_2). In particular, this leads to positive cross-correlations for opposite voltages, a behavior in stark contrast with the one of a standard superconductor, which provides a direct evidence of the presence of the Majorana zero-mode at the edge of the TS. We further extend our results, varying the length of the TS (leading to an overlap of the Majorana bound states) as well as its chemical potential (driving it away from half-filling), generalizing the boundary TS Green function to those cases. In the case of opposite bias voltages, \mbox{sgn}(V_1 \, V_2)=-1, driving the TS wire through the topological transition leads to a sign change of the current cross-correlations, providing yet another signature of the physics of the Majorana bound state.Comment: 14 pages, 8 figure

    Nanomechanical effects in an Andreev quantum dot

    Full text link
    We consider a quantum dot with mechanical degrees of freedom which is coupled to superconducting electrodes. A Josephson current is generated by applying a phase difference. In the absence of coupling to vibrations, this setup was previously proposed as a detector of magnetic flux and we wish here to address the effect of the phonon coupling to this detection scheme. We compute the charge on the quantum dot and determine its dependence on the phase difference in the presence of phonon coupling and Coulomb interaction. This allows to identify regions in parameter space with the highest charge to phase sensitivity, which are relevant for flux detection. Further insight about the interplay of such couplings and subsequent entanglement properties between electron and phonon degrees of freedom are gained by computing the von Neuman entropy.Comment: 9 pages, 7 figures; minor corretion

    Giant shot noise from Majorana zero modes in topological trijunctions

    Full text link
    The clear-cut experimental identification of Majorana bound states in transport measurements still poses experimental challenges. We here show that the zero-energy Majorana state formed at a junction of three topological superconductor wires is directly responsible for giant shot noise amplitudes, in particular at low voltages and for small contact transparency. The only intrinsic noise limitation comes from the current-induced dephasing rate due to multiple Andreev reflection processes

    An electronic Mach-Zehnder interferometer in the Fractional Quantum Hall effect

    Full text link
    We compute the interference pattern of a Mach-Zehnder interferometer operating in the fractional quantum Hall effect. Our theoretical proposal is inspired by a remarkable experiment on edge states in the Integer Quantum Hall effect (IQHE). The Luttinger liquid model is solved via two independent methods: refermionization at nu=1/2 and the Bethe Ansatz solution available for Laughlin fractions. The current differs strongly from that of single electrons in the strong backscattering regime. The Fano factor is periodic in the flux, and it exhibits a sharp transition from sub-Poissonian (charge e/2) to Poissonian (charge e) in the neighborhood of destructive interferences

    Modeling of historical evolution of salt water distribution in the phreatic aquifer in and around the silted up Zwin estuary mouth (Flanders, Belgium)

    Get PDF
    The evolution of the salt-water distribution around the Zwin estuary mouth is modeled for a period of about five centuries. The modeled area is situated in the Flemisch coastal plain near the border of The Netherlands and Belgium. The Zwin estuary is the former waterway to the medieval seaports of Bruges and Damme. During the considered period this alluvial estuary silted up and the modeled area changes from an area around a tidal channel, over a mud flat to a rather complex polder dune area. The evolution is simulated by the 3D density depended groundwater flow model MOCDENS3D (Lebbe & Oude Essink, 1999). The row direction of the applied finite-difference grid is parallel to the present coast line. The simulation is based on old paintings and a large number of maps which allow a relatively detailed reconstruction of the evolution of the landscape. The results show the historical evolution of a large number of different inverse density problems in this area
    • …
    corecore