We consider a quantum dot with mechanical degrees of freedom which is coupled
to superconducting electrodes. A Josephson current is generated by applying a
phase difference. In the absence of coupling to vibrations, this setup was
previously proposed as a detector of magnetic flux and we wish here to address
the effect of the phonon coupling to this detection scheme. We compute the
charge on the quantum dot and determine its dependence on the phase difference
in the presence of phonon coupling and Coulomb interaction. This allows to
identify regions in parameter space with the highest charge to phase
sensitivity, which are relevant for flux detection. Further insight about the
interplay of such couplings and subsequent entanglement properties between
electron and phonon degrees of freedom are gained by computing the von Neuman
entropy.Comment: 9 pages, 7 figures; minor corretion