22 research outputs found

    Destins des S-RNases et interactions molĂ©culaires dans le tube pollinique dans le cadre de l’auto-incompatibilitĂ© gamĂ©tophytique chez Solanum chacoense

    Get PDF
    L’auto-incompatibilitĂ© (AI) est une barriĂšre reproductive prĂ©zygotique qui permet aux pistils d’une fleur de rejeter leur propre pollen. Les systĂšmes d’AI peuvent prĂ©venir l’autofertilisation et ainsi limiter l’inbreeding. Dans l’AI gamĂ©tophytique, le gĂ©notype du pollen dĂ©termine son propre phĂ©notype d’incompatibilitĂ©, et dans ce systĂšme, les dĂ©terminants mĂąles et femelles de l’AI sont codĂ©s par un locus multigĂ©nique et multi-allĂ©lique dĂ©signĂ© le locus S. Chez les Solanaceae, le dĂ©terminant femelle de l’AI est une glycoprotĂ©ine stylaire extracellulaire fortement polymorphique possĂ©dant une activitĂ© ribonuclĂ©ase et dĂ©signĂ©e S-RNase. Les S-RNases montrent un patron caractĂ©ristique de deux rĂ©gions hypervariables (HVa et HVb), responsables de leur dĂ©termination allĂ©lique, et cinq rĂ©gions hautement conservĂ©es (C1 Ă  C5) impliquĂ©es dans l’activitĂ© catalytique ou la stabilisation structurelle de ces protĂ©ines. Dans ce travail, nous avons investiguĂ© plusieurs caractĂ©ristiques des S-RNases et identifiĂ© un nouveau ligand potentiel aux S-RNases chez Solanum chacoense. L’objectif de notre premiĂšre Ă©tude Ă©tait l’élucidation du rĂŽle de la rĂ©gion C4 des S-RNases. Afin de tester l’hypothĂšse selon laquelle la rĂ©gion C4 serait impliquĂ©e dans le repliement ou la stabilitĂ© des S-RNases, nous avons gĂ©nĂ©rĂ© un mutant dans lequel les quatre rĂ©sidus chargĂ©s prĂ©sents en rĂ©gion C4 furent remplacĂ©s par des rĂ©sidus glycine. Cette protĂ©ine mutante ne s’accumulant pas Ă  des niveaux dĂ©tectables, la rĂ©gion C4 semble bien avoir un rĂŽle structurel. Afin de vĂ©rifier si C4 est impliquĂ©e dans une liaison avec une autre protĂ©ine, nous avons gĂ©nĂ©rĂ© le mutant R115G, dans lequel un acide aminĂ© chargĂ© fĂ»t Ă©liminĂ© afin de rĂ©duire les affinitĂ©s de liaison dans cette rĂ©gion. Ce mutant n’affectant pas le phĂ©notype de rejet pollinique, il est peu probable que la rĂ©gion C4 soit impliquĂ©e dans la liaison des S-RNases avec un ligand ou leur pĂ©nĂ©tration Ă  l’intĂ©rieur des tubes polliniques. Enfin, le mutant K113R, dans lequel le seul rĂ©sidu lysine conservĂ© parmi toutes les S-RNases fĂ»t remplacĂ© par un rĂ©sidu arginine, fĂ»t gĂ©nĂ©rĂ© afin de vĂ©rifier si cette lysine Ă©tait un site potentiel d’ubiquitination des S-RNases. Toutefois, la dĂ©gradation des S-RNases ne fĂ»t pas inhibĂ©e. Ces rĂ©sultats indiquent que C4 joue probablement un rĂŽle structurel de stabilisation des S-RNases. Dans une seconde Ă©tude, nous avons analysĂ© le rĂŽle de la glycosylation des S-RNases, dont un site, en rĂ©gion C2, est conservĂ© parmi toutes les S-RNases. Afin d’évaluer la possibilitĂ© que les sucres conjuguĂ©s constituent une cible potentielle d’ubiquitination, nous avons gĂ©nĂ©rĂ© une S11-RNase dont l‘unique site de glycosylation en C2 fĂ»t Ă©liminĂ©. Ce mutant se comporte de maniĂšre semblable Ă  une S11-RNase de type sauvage, dĂ©montrant que l’absence de glycosylation ne confĂšre pas un phĂ©notype de rejet constitutif du pollen. Afin de dĂ©terminer si l’introduction d’un sucre dans la rĂ©gion HVa de la S11-RNase pourrait affecter le rejet pollinique, nous avons gĂ©nĂ©rĂ© un second mutant comportant un site additionnel de glycosylation dans la rĂ©gion HVa et une troisiĂšme construction qui comporte elle aussi ce nouveau site mais dont le site en rĂ©gion C2 fĂ»t Ă©liminĂ©. Le mutant comportant deux sites de glycosylation se comporte de maniĂšre semblable Ă  une S11-RNase de type sauvage mais, de maniĂšre surprenante, le mutant uniquement glycosylĂ© en rĂ©gion HVa peut aussi rejeter le pollen d’haplotype S13. Nous proposons que la forme non glycosylĂ©e de ce mutant constitue un allĂšle Ă  double spĂ©cificitĂ©, semblable Ă  un autre allĂšle Ă  double spĂ©cificitĂ© prĂ©alablement dĂ©crit. Il est intĂ©ressant de noter que puisque ce phĂ©notype n’est pas observĂ© dans le mutant comportant deux sites de glycosylation, cela suggĂšre que les S-RNases ne sont pas dĂ©glycosylĂ©es Ă  l’intĂ©rieur du pollen. Dans la derniĂšre Ă©tude, nous avons rĂ©alisĂ© plusieurs expĂ©riences d’interactions protĂ©ine-protĂ©ine afin d’identifier de potentiels interactants polliniques avec les S-RNases. Nous avons dĂ©montrĂ© que eEF1A, un composant de la machinerie de traduction chez les eucaryotes, peut lier une S11-RNase immobilisĂ©e sur rĂ©sine concanavaline A. Des analyses de type pull-down utilisant la protĂ©ine eEF1A de S. chacoense Ă©tiquetĂ©e avec GST confirment cette interaction. Nous avons aussi montrĂ© que la liaison, prĂ©alablement constatĂ©e, entre eEF1A et l’actine est stimulĂ©e en prĂ©sence de la S11-RNase, bien que cette derniĂšre ne puisse directement lier l’actine. Enfin, nous avons constatĂ© que dans les tubes polliniques incompatibles, l’actine adopte une structure agrĂ©gĂ©e qui co-localise avec les S-RNases. Ces rĂ©sultats suggĂšrent que la liaison entre eEF1A et les S-RNases pourrait constituer un potentiel lien fonctionnel entre les S-RNases et l’altĂ©ration du cytosquelette d’actine observĂ©e lors des rĂ©actions d’AI. Par ailleurs, si cette liaison est en mesure de titrer les S-RNases disponibles Ă  l’intĂ©rieur du tube pollinique, ce mĂ©canisme pourrait expliquer pourquoi des quantitĂ©s minimales ou « seuils » de S-RNases sont nĂ©cessaires au dĂ©clenchement des rĂ©actions d’AI.Self-incompatibility (SI) is a prezygotic reproductive barrier that allows the pistil of a flower to specifically reject their own (self-) pollen. SI systems can help prevent self-fertilization and avoid inbreeding. In gametophytic SI (GSI), the genotype of the pollen determines its breeding behaviour and in this system both female and male specificity determinants of SI are under the control of a multigenic and multiallelic locus called the S-locus. In Solanaceae, the female determinant of SI is a highly polymorphic stylar-expressed extracellular glycoprotein with RNase activity called the S-RNase. S-RNases show a distinct pattern of two hypervariable (HVa and HVb) regions, responsible for their allelic specificity, and five highly conserved regions (C1 to C5) thought to be involved in either the catalytic activity or the structural stabilization of the protein. In this work, we analyzed and characterized several conserved features of the S-RNases and also identified a potential novel S-RNase interactant in Solanum chacoense. The aim of our first study was to investigate the role of the C4 region of S-RNases. To test the hypothesis that the C4 region may be involved in S-RNase folding or stability, we examined a mutant in which the four charged residues in the C4 region were replaced with glycine. This mutant did not accumulate to detectable levels in styles, supporting a structural role for C4. To test the possibility that C4 might be involved in binding another protein, we prepared an R115G mutant, in which a charged amino acid was eliminated to reduce any potential binding to this region. This mutant had no effect on the pollen rejection phenotype of the protein, and thus C4 is likely not involved in either ligand binding or S-RNase entry inside pollen tubes. Finally, a K113R mutant, in which the only conserved lysine residue in all the S-RNases was replaced with arginine, was generated to test if this residue was an S-RNase ubiquitination site. However, S-RNase degradation was not disrupted in this mutant. Taken together, these results indicate that the C4 region likely plays a structural role. In a second study, we analyzed the role of S-RNase glycosylation. All S-RNases share a conserved glycosylation site in the C2 region. To test the possibility that the sugar residues might be a target for ubiquitination, a transgenic S11-RNase lacking its single glycosylation site was examined. This construct behaved similarly to a wild type S11-RNase, demonstrating that the lack of glycosylation does not confer constitutive pollen rejection. To determine if the introduction of an N-linked glycan in the HVa region would affect pollen rejection, a construct containing a second N-glycosylation site inside the HVa region of the S11-RNase and a construct containing only that N-glycosylation site inside the HVa region were prepared. The first construct rejected S11 pollen normally, but surprisingly, plants expressing the construct lacking the C2 glycosylation site rejected both S11 and S13 pollen. We propose that the non-glycosylated form is a dual specific allele, similar to a previously described dual-specific allele that also had amino acid replacements in the HV regions. Interestingly, this phenotype is not observed in the mutant containing two glycosylation sites, which suggests that the sugar residues are not removed during S-RNase entry into the pollen. In the final study, S-RNase-binding assays were performed with pollen extracts to detect potential interacting proteins. We found that concanavalin A-immobilized S11-RNase bound eEF1A, a component of the eukaryotic translational machinery. This interaction was validated by pull-down experiments using a GST-tagged S. chacoense eEF1A. We also found that a previously documented actin binding to eEF1A was markedly increased in the presence of S-RNases, although S-RNases alone do not bind actin. Lastly, we observed that actin in incompatible pollen tubes has an unusual aggregated form which also co-labels with S-RNases. This suggests that binding between S-RNases and eEF1A could provide a potential functional link between the S-RNase and the alteration of the actin cytoskeleton that occurs during the SI reaction. Furthermore, if eEF1A binding to S-RNases acted to titrate the amount of free S-RNase in the pollen tube, this binding may help explain the threshold phenomenon, where a minimum quantity of S-RNase in the style is required to trigger the SI reaction

    Open data from the third observing run of LIGO, Virgo, KAGRA and GEO

    Get PDF
    The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in April of 2019 and lasting six months, O3b starting in November of 2019 and lasting five months, and O3GK starting in April of 2020 and lasting 2 weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main dataset, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages.Comment: 27 pages, 3 figure

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≀0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    eEF1A Is an S-RNase Binding Factor in Self-Incompatible <i>Solanum chacoense</i>

    No full text
    <div><p>Self-incompatibility (SI) is a genetic mechanism that allows flowering plants to identify and block fertilization by self-pollen. In the Solanaceae, SI is controlled by a multiallelic <i>S</i>-locus encoding both S-RNases and F-box proteins as female and male determinants, respectively. S-RNase activity is essential for pollen rejection, and a minimum threshold value of S-RNases in the style is also required. Here we present biochemical evidence that eEF1A is a novel S-RNase-binding partner <i>in vitro</i>. We further show that the normal actin binding activity of eEF1A is enhanced by the presence of S-RNase. Lastly, we find that there is a co-localization of S-RNase and actin in the incompatible pollen tubes in structures reminiscent of the actin bundles formed by eEF1A. We propose that increased binding of eEF1A to actin in the presence of S-RNase could help explain the disruption of the actin cytoskeleton observed during SI reactions.</p></div

    eEF1A binding to actin is increased by S<sub>11</sub>-RNase.

    No full text
    <p>(A) A GST-eEF1A fusion protein immobilized on GST resin was mixed with known amounts of purified S<sub>11</sub>-RNase and/or a commercial bovine actin. GST-eEF1A binds similar amounts of S<sub>11</sub>-RNase whether actin is present or not but the amount of actin bound by eEF1A increases markedly in the presence of S<sub>11</sub>-RNase. (B) A GST protein control binds neither S<sub>11</sub>-RNase nor actin.</p

    Regions of intense actin staining in incompatible pollen tubes also stain with S<sub>11</sub>-RNase.

    No full text
    <p>Incompatible pollen tubes 18(A) and 24 h (B) post-pollination stained simultaneously with anti-actin (5 nm colloidal gold, black arrows) and anti-S11-RNase (20 nm colloidal gold, white arrows). Scale bars are 0.1 ”m.</p

    Protein purification schema and proteins identified in the final eluate.

    No full text
    <p>The stylar S-RNase was purified by ConA and Resource S (ion exchange) chromatography before being immobilized on ConA beads. Pollen proteins, depleted of proteins binding non-specifically to the ConA resin, were applied to the immobilized S-RNase, washed and eluted with ConA elution buffer. Only three proteins were detected in the specific eluate by LC-MS/MS.</p
    corecore