4,074 research outputs found

    1,2-Dimethyl-4,5-diphenylbenzene determined on a Bruker SMART X2S benchtop crystallographic system

    Get PDF
    The title compound, C(20)H(18), has two crystallographically independent molecules in the asymmetric unit. The phenyl substituents of molecule A are twisted away from the plane defined by the central benzene ring by 131.8 (2) and -52.7 (3)degrees. The phenyl substituents of molecule B are twisted by -133.3 (2) and 50.9 (3)degrees. Each molecule is stabilized by a pair of intraMolecular C(aryl, sp(2))-H center dot center dot center dot pi interactions, as well as by several interMolecular C(methyl, sp(3))-H center dot center dot center dot pi interactions

    2,3-Bis(bromomethyl)-1,4-diphenylbenzene

    Get PDF
    In the title compound, C(20)H(16)Br(2), the terminal phenyl groups are twisted away from the central ring by approximately 55 and -125 degrees (average of four dihedral angles each), respectively. The crystal structure is stabilized by a combination of interMolecular and intraMolecular interactions including interMolecular pi-pi stacking interactions [C atoms of closest contact = 3.423 ( 5) angstrom]

    Structural relaxation in Morse clusters: Energy landscapes

    Full text link
    We perform a comprehensive survey of the potential energy landscapes of 13-atom Morse clusters, and describe how they can be characterized and visualized. Our aim is to detail how the global features of the funnel-like surface change with the range of the potential, and to relate these changes to the dynamics of structural relaxation. We find that the landscape becomes rougher and less steep as the range of the potential decreases, and that relaxation paths to the global minimum become more complicated.Comment: 21 pages, 3 tables, 5 figure

    Dynamic Arrival Rate Estimation for Campus Mobility on Demand Network Graphs

    Full text link
    Mobility On Demand (MOD) systems are revolutionizing transportation in urban settings by improving vehicle utilization and reducing parking congestion. A key factor in the success of an MOD system is the ability to measure and respond to real-time customer arrival data. Real time traffic arrival rate data is traditionally difficult to obtain due to the need to install fixed sensors throughout the MOD network. This paper presents a framework for measuring pedestrian traffic arrival rates using sensors onboard the vehicles that make up the MOD fleet. A novel distributed fusion algorithm is presented which combines onboard LIDAR and camera sensor measurements to detect trajectories of pedestrians with a 90% detection hit rate with 1.5 false positives per minute. A novel moving observer method is introduced to estimate pedestrian arrival rates from pedestrian trajectories collected from mobile sensors. The moving observer method is evaluated in both simulation and hardware and is shown to achieve arrival rate estimates comparable to those that would be obtained with multiple stationary sensors.Comment: Appears in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). http://ieeexplore.ieee.org/abstract/document/7759357

    Relationships between land use and nitrogen and phosphorus in New Zealand lakes

    Get PDF
    Developing policies to address lake eutrophication requires an understanding of the relative contribution of different nutrient sources and of how lake and catchment characteristics interact to mediate the source–receptor pathway. We analysed total nitrogen (TN) and total phosphorus (TP) data for 101 New Zealand lakes and related these to land use and edaphic sources of phosphorus (P). We then analysed a sub-sample of lakes in agricultural catchments to investigate how lake and catchment variables influence the relationship between land use and in-lake nutrients. Following correction for the effect of co-variation amongst predictor variables, high producing grassland (intensive pasture) was the best predictor of TN and TP, accounting for 38.6% and 41.0% of variation, respectively. Exotic forestry and urban area accounted for a further 18.8% and 3.6% of variation in TP and TN, respectively. Soil P (representing naturally-occurring edaphic P) was negatively correlated with TP, owing to the confounding effect of pastoral land use. Lake and catchment morphology (zmax and lake : catchment area) and catchment connectivity (lake order) mediated the relationship between intensive pasture and in-lake nutrients. Mitigating eutrophication in New Zealand lakes requires action to reduce nutrient export from intensive pasture and quantifying P export from plantation forestry requires further consideration

    Thermodynamics and the Global Optimization of Lennard-Jones clusters

    Full text link
    Theoretical design of global optimization algorithms can profitably utilize recent statistical mechanical treatments of potential energy surfaces (PES's). Here we analyze the basin-hopping algorithm to explain its success in locating the global minima of Lennard-Jones (LJ) clusters, even those such as \LJ{38} for which the PES has a multiple-funnel topography, where trapping in local minima with different morphologies is expected. We find that a key factor in overcoming trapping is the transformation applied to the PES which broadens the thermodynamic transitions. The global minimum then has a significant probability of occupation at temperatures where the free energy barriers between funnels are surmountable.Comment: 13 pages, 13 figures, revte

    The double-funnel energy landscape of the 38-atom Lennard-Jones cluster

    Full text link
    The 38-atom Lennard-Jones cluster has a paradigmatic double-funnel energy landscape. One funnel ends in the global minimum, a face-centred-cubic (fcc) truncated octahedron. At the bottom of the other funnel is the second lowest energy minimum which is an incomplete Mackay icosahedron. We characterize the energy landscape in two ways. Firstly, from a large sample of minima and transition states we construct a disconnectivity tree showing which minima are connected below certain energy thresholds. Secondly we compute the free energy as a function of a bond-order parameter. The free energy profile has two minima, one which corresponds to the fcc funnel and the other which at low temperature corresponds to the icosahedral funnel and at higher temperatures to the liquid-like state. These two approaches show that the greater width of the icosahedral funnel, and the greater structural similarity between the icosahedral structures and those associated with the liquid-like state, are the cause of the smaller free energy barrier for entering the icosahedral funnel from the liquid-like state and therefore of the cluster's preferential entry into this funnel on relaxation down the energy landscape. Furthermore, the large free energy barrier between the fcc and icosahedral funnels, which is energetic in origin, causes the cluster to be trapped in one of the funnels at low temperature. These results explain in detail the link between the double-funnel energy landscape and the difficulty of global optimization for this cluster.Comment: 12 pages, 11 figures, revte

    Predictive positioning and quality of service ridesharing for campus mobility on demand systems

    Get PDF
    Autonomous Mobility On Demand (MOD) systems can utilize fleet management strategies in order to provide a high customer quality of service (QoS). Previous works on autonomous MOD systems have developed methods for rebalancing single capacity vehicles, where QoS is maintained through large fleet sizing. This work focuses on MOD systems utilizing a small number of vehicles, such as those found on a campus, where additional vehicles cannot be introduced as demand for rides increases. A predictive positioning method is presented for improving customer QoS by identifying key locations to position the fleet in order to minimize expected customer wait time. Ridesharing is introduced as a means for improving customer QoS as arrival rates increase. However, with ridesharing perceived QoS is dependent on an often unknown customer preference. To address this challenge, a customer ratings model, which learns customer preference from a 5-star rating, is developed and incorporated directly into a ridesharing algorithm. The predictive positioning and ridesharing methods are applied to simulation of a real-world campus MOD system. A combined predictive positioning and ridesharing approach is shown to reduce customer service times by up to 29%. and the customer ratings model is shown to provide the best overall MOD fleet management performance over a range of customer preferences.Ford Motor CompanyFord-MIT Allianc

    Demand estimation and chance-constrained fleet management for ride hailing

    Get PDF
    In autonomous Mobility on Demand (MOD) systems, customers request rides from a fleet of shared vehicles that can be automatically positioned in response to customer demand. Recent approaches to MOD systems have focused on environments where customers can only request rides through an app or by waiting at a station. This paper develops MOD fleet management approaches for ride hailing, where customers may instead request rides simply by hailing a passing vehicle, an approach of particular importance for campus MOD systems. The challenge for ride hailing is that customer demand is not explicitly provided as it would be with an app, but rather customers are only served if a vehicle happens to be located at the arrival location. This work focuses on maximizing the number of served hailing customers in an MOD system by learning and utilizing customer demand. A Bayesian framework is used to define a novel customer demand model which incorporates observed pedestrian traffic to estimate customer arrival locations with a quantification of uncertainty. An exploration planner is proposed which routes MOD vehicles in order to reduce arrival rate uncertainty. A robust ride hailing fleet management planner is proposed which routes vehicles under the presence of uncertainty using a chance-constrained formulation. Simulation of a real-world MOD system on MIT's campus demonstrates the effectiveness of the planners. The customer demand model and exploration planner are demonstrated to reduce estimation error over time and the ride hailing planner is shown to improve the fraction of served customers in the system by 73% over a baseline exploration approach.Ford-MIT AllianceFord Motor Compan
    corecore