4 research outputs found

    Particle-in-cell simulations of the relaxation of electron beams in inhomogeneous solar wind plasmas

    Get PDF
    The authors acknowledge funding from the Leverhulme Trust Research Project grant RPG-311. The computational work for this paper was carried out on the joint BIS, STFC and SFC (SRIF) funded DiRAC-1 cluster at the University of St Andrews (Scotland, UK). The EPOCH code used in this work was in part funded by the UK EPSRC grants EP/G054950/1, EP/G056803/1, EP/G055165/1 and EP/ M022463/1

    Resistively-limited current sheet implosions in planar anti-parallel (1D) and null-point containing (2D) magnetic field geometries

    Get PDF
    Implosive formation of current sheets is a fundamental plasma process. Previous studies focused on the early time evolution, while here our primary aim is to explore the longer-term evolution, which may be critical for determining the efficiency of energy release. To address this problem we investigate two closely-related problems, namely: (i) 1D, pinched anti-parallel magnetic fields and (ii) 2D, null point containing fields which are locally imbalanced ('null-collapse' or 'X-point collapse'). Within the framework of resistive MHD, we simulate the full nonlinear evolution through three distinct phases: the initial implosion, its eventual halting mechanism, and subsequent evolution post-halting. In a parameter study, we find the scaling with resistivity of current sheet properties at the halting time is in good agreement - in both geometries - with that inferred from a known 1D similarity solution. We find that the halting of the implosions occurs rapidly after reaching the diffusion scale by sudden Ohmic heating of the dense plasma within the current sheet, which provides a pressure gradient sufficient to oppose further collapse and decelerate the converging flow. This back-pressure grows to exceed that required for force balance and so the post-implosion evolution is characterised by the consequences of the current sheet `bouncing' outwards. These are: (i) the launching of propagating fast MHD waves (shocks) outwards and (ii) the width-wise expansion of the current sheet itself. The expansion is only observed to stall in the 2D case, where the pressurisation is relieved by outflow in the reconnection jets. In the 2D case, we quantify the maximum amount of current sheet expansion as it scales with resistivity, and analyse the structure of the reconnection region which forms post-expansion, replete with Petschek-type slow shocks and fast termination shocks

    3D WKB solution for fast magnetoacoustic wave behaviour within a separatrix dome containing a coronal null point

    Get PDF
    The propagation of the fast magnetoacoustic wave is studied within a magnetic topology containing a 3D coronal null point whose fan field lines form a dome. The topology is constructed from a magnetic dipole embedded within a global uniform field. This study aims to improve the understanding of how magnetohydrodynamics (MHD) waves propagate through inhomogeneous media, specifically in a medium containing an isolated 3D magnetic null point. We consider the linearized MHD equations for an inhomogeneous, ideal, cold plasma. The equations are solved utilizing the WKB approximation and Charpit’s Method. We find that for a planar fast wave generated below the null point, the resultant propagation is strongly dependent upon initial location and that there are two main behaviours: the majority of the wave escapes the null (experiencing different severities of refraction depending upon the interplay with the equilibrium Alfven-speed profile) or, alternatively, part of the wave is captured by the coronal null point (for elements generated within a specific critical radius about the spine and on the z = 0 plane). We also generalize the magnetic topology and find that the height of the null determines the amount of wave that is captured. We conclude that for a wavefront generated below the null point, nulls at a greater height can trap proportionally less of the corresponding wave energy

    The Limits of Veneration: Public Support for a New Constitutional Convention

    No full text
    corecore