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ABSTRACT
The propagation of the fast magnetoacoustic wave is studied within a magnetic topology
containing a 3D coronal null point whose fan field lines form a dome. The topology is
constructed from a magnetic dipole embedded within a global uniform field. This study
aims to improve the understanding of how magnetohydrodynamics (MHD) waves propagate
through inhomogeneous media, specifically in a medium containing an isolated 3D magnetic
null point. We consider the linearized MHD equations for an inhomogeneous, ideal, cold
plasma. The equations are solved utilizing the WKB approximation and Charpit’s Method.
We find that for a planar fast wave generated below the null point, the resultant propagation is
strongly dependent upon initial location and that there are two main behaviours: the majority
of the wave escapes the null (experiencing different severities of refraction depending upon
the interplay with the equilibrium Alfvén-speed profile) or, alternatively, part of the wave is
captured by the coronal null point (for elements generated within a specific critical radius
about the spine and on the z = 0 plane). We also generalize the magnetic topology and find
that the height of the null determines the amount of wave that is captured. We conclude that
for a wavefront generated below the null point, nulls at a greater height can trap proportionally
less of the corresponding wave energy.

Key words: Magnetic fields – Waves – Sun: corona – (magnetohydrodynamics) MHD.

1 IN T RO D U C T I O N

The solar corona is replete with oscillations and wave behaviour,
which is well described by magnetohydrodynamics (MHD; see e.g.
Roberts 2004; De Moortel 2005; Nakariakov & Verwichte 2005),
and various types of MHD waves have been observed by several
solar instruments (see Nakariakov et al. 2016, for a recent review).
From both theoretical considerations as well as observations, it
is clear that the propagation, evolution, and behaviour of MHD
waves is linked intimately with the magnetic topology of the region
in which they manifest. Thus, in order to understand MHD wave
behaviour in the solar corona, one must also understand the topology
of the coronal magnetic field.

Potential field extrapolations of the coronal magnetic field can
be made from magnetograms of the photosphere (e.g. see Régnier
2013) and these extrapolations show the topology (structure) of
the magnetic field can contain two key features: null points –
locations within a magnetic topology in which the field strength

� E-mail: james.a.mclaughlin@northumbria.ac.uk

is zero (see Longcope 2005; Régnier, Parnell & Haynes 2008;
Priest 2014; Edwards & Parnell 2015), and separatrix surfaces
– topological surfaces that separate regions of different magnetic
flux connectivity. Null points occur naturally wherever there exist
multiple flux fragments in a domain. By considering these funda-
mental elements of a field’s configuration, one can prescribe the
magnetic skeleton of the topology. Parnell et al. (1996) investigated
and classified the different types of linear magnetic null points that
can exist. Topologically, 3D null points consist of two key features:
a special, isolated field line called the spine, which approaches
(or recedes from) the null from above and below (Priest & Titov
1996) and a fan surface consisting of field lines spreading out from
(or approaching) the null. Null points have received considerable
attention as they are locations at which magnetic reconnection can
occur (e.g. Priest & Forbes 2000; Pontin, Hornig & Priest 2005;
McLaughlin et al. 2009). Null points occur not only within solar
magnetic field configurations but can be found throughout nature,
such as in the Earth’s magnetic field (Finn 2006).

From potential field extrapolations and observations, it is evident
that both MHD waves and magnetic null points are present through-
out the solar corona. It is therefore natural to assume that MHD
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waves will encounter these magnetic features. This paper follows a
series of papers studying the interactions between MHD waves and
various magnetic null point topologies (McLaughlin & Hood 2004,
2005, 2006a,b; McLaughlin, Ferguson & Hood 2008; Thurgood &
McLaughlin 2012, 2013a,b; McLaughlin et al. 2016). This series
of papers suggest that it is a generic result that fast mode waves
will be attracted to the close vicinity of magnetic null points due to
a refraction effect, where they subsequently concentrate energy on
small scales, experiencing enhanced visco-resistive dissipation and
triggering magnetic reconnection (the specific physics of which
have been considered by Thurgood, Pontin & McLaughlin 2017,
2018a,b). Here, specifically, we consider the behaviour of the fast
MHD wave in the neighbourhood of a coronal null point located
at the apex of a separatrix dome, i.e. a 3D null whose field
lines form a magnetic dome configuration. This configuration is
more physically representative of the coronal magnetic field than
previously considered. Crucially, we aim to assess the extent to
which wavefronts emanating from below such a null (representing
upwardly-propagating wave-energy flux from the solar surface) may
be attracted to and trapped in the close vicinity of such a null.

The Wentzel–Kramers–Brillouin (WKB) approximation is a
mathematical technique which utilizes an expansion approach to
approximate exponential waveforms (see e.g. Bender & Orszag
1978; Tracey et al. 2014). For this technique to be applied the system
must contain a large parameter. Since the typical spatial scales of the
medium that fast waves propagate through is much larger than their
typical wavelength, the WKB approximation provides an ideal tool
for examining the propagation of the fast magnetoacoustic wave.
Several authors have utilized the technique successfully in a solar
context (e.g. Khomenko & Collados 2006 consider propagation in
a magnetic sunspot-like structure; Afanasyev & Uralov 2011, 2012
consider aspects of solar shocks in a non-linear extension of the
WKB method). However, the use of the WKB approximation is
not just limited to astrophysical applications; the approximation is
used in many other branches of physics, for example in quantum
mechanics, where it can be used to calculate an approximate
solution to Schrödinger’s equation (see Griffiths 2004). Within the
wider topic of ray tracing methods, Núñez (2017, 2018) studied
the geometry of rays and wavefronts associated with the fast
magnetosonic wave and applied the results to the formation of
shock waves and to current sheets. Of particular interest to this
article is the work of McLaughlin et al. (2008) who utilized the
WKB approximation to investigate MHD wave behaviour in the
neighbourhood of a fully 3D null point. The authors utilized the
technique to determine the transient properties of the fast and Alfvén
modes in a linear, β = 0 plasma regime. However, McLaughlin
et al. (2008) considered a simple 3D null point whose magnetic
field strength becomes unphysically large as one moves far away
from the null. In contrast, the magnetic field considered in this paper
is more physically representative of the coronal magnetic field and
removes this limitation (see Section 2.2).

The topology described in this paper exists above any para-
sitic polarity region and is a common feature in potential field
extrapolations. Such a topology has been investigated by other
authors: Pontin, Priest & Galsgaard (2013) considered a topol-
ogy constructed from magnetic monopoles and investigated the
properties of reconnection in such a system, and Tarr, Linton &
Leake (2017) used three magnetic monopoles to construct a 2D
magnetic dome topology (in 2D, these manifest as separatrices
rather than separatrix surfaces), embedded within a model stratified
solar atmosphere with the null at a coronal altitude. For a wave
packet generated at the photosphere, Tarr et al. (2017) found that

the wave propagates into the 2D dome topology and that a portion
of the wave refracts towards the null owing to the varying Alfvén
speed, and that approximately 15.5 per cent of the wavepacket’s
initial energy converges on the null. In contrast to the monopole
approach, Candelaresi, Pontin & Hornig (2016) considered a dome
topology constructed from analytical expressions for a dipole and
uniform field. They considered the effects of photospheric footpoint
motions as an input of energy into the topology. In this paper, we
consider a similar analytical set-up to that of Candelaresi et al.
(2016).

The paper has the following structure: the equations utilized to
describe the system are detailed in Section 2, including assumptions,
simplifications, linearization, and non-dimensionalization. This
section will also outline the construction of the specific magnetic
topology through which the fast wave will propagate (Section 2.2).
Section 3 details the utilization of the WKB approximation and
the isolation of the fast wave, and Section 4 presents the results
obtained. Section 5 calculates the percentage of wave captured
and the alterations this makes to the propagation of the fast wave.
The conclusions are presented in Section 6. Appendix A details a
generalization of the magnetic topology.

2 G OV E R N I N G E QUAT I O N S

To study the propagation of MHD waves through a plasma it is first
necessary to construct a mathematical model of the environment.
This can be achieved by utilizing the following resistive, adiabatic
MHD equations to describe an inhomogeneous plasma

ρ
∂v
∂t

+ ρ(v · ∇)v = −∇p + j × B + ρg,

∂B
∂t

= ∇ × (v × B) + η∇2B,

∂ρ

∂t
+ ∇ · (ρv) = 0,

∂p

∂t
+ v · ∇p = −γp∇ · v,

μj = ∇ × B, (1)

where ρ is the mass density, v is the plasma velocity, t denotes time,
p is the gas pressure, j is electric current density, B is magnetic
induction (usually called the magnetic field), g is gravitational
acceleration, η is magnetic diffusivity, γ is the adiabatic index,
and μ is the magnetic permeability.

2.1 Linearization and non-dimensionalization

We will utilize the linearized MHD equations in order to study
wave propagation in our system. To do this, for each variable a, we
assume a = a0 + εa1, where a0 is the equilibrium quantity, a1 is
the perturbed quantity, and ε is a small parameter such that ε � 1.
Hence, equation (1) becomes

ρ0
∂v1

∂t
= −∇p1 + j0 × B1 + j1 × B0 + ρ1g (2)

∂B1

∂t
= ∇ × (v1 × B0) + η∇2B1, (3)

∂ρ1

∂t
+ ∇ · (ρ0v1) = 0, (4)

∂p1

∂t
+ v1 · ∇p0 = −γp0∇ · v1, (5)
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μj1 = ∇ × B1, (6)

where we choose v0 = 0. We then consider the following simpli-
fications: we choose a potential equilibrium magnetic field (∇ ×
B0 = μj0 = 0), as well as an ideal plasma (η = 0); gravitational
effects are neglected (g = 0); and the equilibrium density, ρ0, is
assumed to be uniform1. Given that, in the coronal plasma we are
modelling, magnetic pressure dominates over gas pressure, i.e. β

� 1, we consider a ‘cold’ plasma assumption2. This is achieved via
setting p0 = 0.

The equations are now subjected to the following decompositions
in order to render them dimensionless: we let x = Lx̃, y = Lỹ, z =
Lz̃, v1 = vṽ1, B0 = BB̃0, B1 = BB̃1, t = Tt̃ , and ∇ = ∇̃/L, where
x̃, ỹ, z̃, ṽ1, B̃0, B̃1, t̃ , and ∇̃ are the dimensionless quantities and L,
v, B, T are constants of dimensionality for their respective variable.
We then set v as a constant background Alfvén speed, namely v =
B/

√
μρ0, as well as v = L/T. Under this non-dimensionalization,

t̃ = 1 refers to t = T = L/v, i.e. the Alfvén time taken to travel
distance L.

For the rest of this paper, the tides are now dropped from
the dimensionless quantities (that they are non-dimensionalized is
understood) yielding the following non-dimensionalized, linearized
equations for a cold, ideal plasma

∂v1

∂t
= (∇ × B1) × B0, and

∂B1

∂t
= ∇ × (v1 × B0).

which can be brought together in a single wave equation

∂2v1

∂t2
= {∇ × [∇ × (v1 × B0)]} × B0. (7)

Hence, given a suitable choice for the equilibrium magnetic field,
B0, it is possible to obtain the perturbed velocity, v1.

2.2 Magnetic topology

We wish to consider an isolated 3D null point located at the apex of a
separatrix dome. Thus, we consider a similar analytical set-up to that
of Candelaresi et al. (2016) namely we consider a Cartesian domain
with a magnetic topology consisting of a (parasitic) magnetic
dipole within a (global) uniform field. The topology is created by
considering a vector potential, A, such that B = ∇ × A. The dipole
field can be calculated by taking the dipole magnetic moment, m =
(0, 0, −1), where the negative sign on m ensures a parasitic polarity
relative to the uniform field. Given position vector r = (x, y, z), the
dipole is placed at r0 = (0, 0, d). In this paper, we choose d = −0.2.
This corresponds to a model ‘photosphere’ at z = 0, where the
dipole is centred at x = y = 0 and buried at a depth of |d|. Following
Shadowitz (1975), the (non-dimensionalized) equilibrium vector
potential for the dipole is calculated via

Adipole(r) = m × (r − r0)

|(r − r0)|3 ,

from which the dipole magnetic field is calculated: Bdipole = ∇ ×
Adipole. The full equilibrium magnetic topology in our system is

1Note that spatial inhomogeneity in ρ0 can lead to phase mixing, see e.g.
Heyvaerts & Priest (1982); Nakariakov, Roberts & Murawski (1997); Botha
et al. 2000; McLaughlin, De Moortel & Hood (2011a).
2Note that this is not strictly true for wave-null interactions since B → 0
at the null itself, but we note that the cold plasma assumption is a good
approximation away from and near the null.

Figure 1. Rotationally-symmetric equilibrium magnetic field in the x = 0,
yz−plane. Dipole is located at x = y = 0 and z = d = −0.2. 3D null point
is located at x = y = 0, at a height z = 21/3 + d = 21/3 − 0.2 = 1.05992.
Black lines denote magnetic field lines, and red lines indicate the magnetic
skeleton in this plane: y = 0 denotes the spine and the curve denotes the
separatrix fan surface: here y2 + (z − d)2 = 22/3. Arrows indicate the
magnetic field direction.

created by adding a uniform magnetic field Buniform = (0, 0, 1). This
gives the equilibrium magnetic field which will be used throughout
this paper ,

B0 = Bdipole + Buniform = (Bx, By, Bz),

where the individual components of the magnetic field can be
expressed as follows :

Bx = − 3x(z − d)

[x2 + y2 + (z − d)2]5/2
,

By = − 3y(z − d)

[x2 + y2 + (z − d)2]5/2
,

Bz = x2 + y2 − 2(z − d)2

[x2 + y2 + (z − d)2]5/2
+ 1. (8)

This constructs a system with an isolated 3D null point which is
located on x = y = 0 at height z = 21/3 + d = 21/3 − 0.2 = 1.05992
(the height of the null within the topology is calculated by setting
B0 = 0). The separatrix surface of this null extends down to the z

= 0, xy−plane forming a dome shape. The equilibrium magnetic
field in the x = 0, yz −plane – B0(0, y, z) – can be seen in Fig. 1,
where magnetic field lines are indicated as black lines. Here, the red
lines indicate the key topological features – the magnetic skeleton
– which divides the connectivity of the region in this plane: the
line y = 0 denotes the spine and the curve y2 + (z − d)2 = 22/3

denotes the separatrix fan surface. Arrows indicate the magnetic
field direction. We identify this type of null point as a negative null
(as defined by Parnell et al. 1996), since the fan surface consists of
field lines approaching the null and the field lines forming the spine
are directed away from the 3D null.

The equilibrium magnetic field is rotationally symmetric about z

= 0 and this can be seen in Fig. 2, which shows a 3D representation
of the magnetic skeleton. Here, the red lines denote the separatrix fan
surface, as in Fig. 1, but the spine is now denoted in blue for clarity.
The lower boundary, z = 0, shows the value of Bz(x, y, 0) i.e. the
line-of-sight magnetogram. Our isolated 3D null point is generated
by a parasitic polarity (black) within a uniform magnetic field (grey)
and thus the dashed green line indicates the location of the polarity
inversion line (the radius of which is 0.27472). Mathematically, the
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Figure 2. 3D representation of the magnetic skeleton. Here, the blue line
denotes the spine, and the solid red lines denote the separatrix fan surface,
described by x2 + y2 + (z − d)2 = R2 = 22/3, where R = 21/3. The lower
boundary shows the value of Bz(x, y, 0), i.e. the line-of-sight magnetogram.
The dotted red circle indicates the (circular) footprint of the separatrix
fan surface, described by radius= √

R2 − d2 = √
22/3 − 0.04 = 1.24395).

The dashed green line indicates the location of the polarity inversion line
(radius = 0.274 72).

separatrix surface is the surface of a sphere described by x2 + y2

+ (z − d)2 = R2 = 22/3. Since we have placed the dipole at z = d
= −0.2, this means the separatrix surface forms a spherical dome
of height z = R + d = 21/3 − 0.2 = 1.05992 and with a circular
footprint of radius

√
R2 − d2 = √

22/3 − 0.04 = 1.24395. This is
denoted by a dotted red circle on the lower boundary/line-of-sight
magnetogram in Fig. 2, i.e. this is the ‘footprint’ of the dome. Note
that although B0 is inhomogeneous, it is still potential (∇ × B0 =
0) and solenoidal (∇ · B0 = 0). Note that as we move away from
the null point, B0 → (0, 0, 1), i.e. we recover the uniform field.
This is a more physically-realistic topology than that investigated
in McLaughlin et al. (2008).

Previous work (see review by McLaughlin, Hood & De Moortel
2011b) has highlighted that the equilibrium Alfvén-speed profile
– vA(x, y, z) = |B0(x, y, z)| – plays a key role in dictating the
propagation of the fast wave. Fig. 3 shows a colour contour of vA(0,
y, z) = |B0(0, y, z)| in the x = 0, yz−plane. The red lines denote
the magnetic skeleton in this plane (as per Fig. 1). The contour
shows clearly that the Alfvén-speed profile changes substantially
across the magnetic domain and we observe that there is a small
island of low Alfvén speed around the null point at (x, y, z) = (0, 0,
1.059 92), and that this is zero at the null itself (as per the definition).
In contrast, the Alfvén-speed profile reaches a maximum at x = y
= z = 0, i.e. the closest point in our domain (where z ≥ 0) to the
location of the (buried) dipole.

3 W KB A P P ROX IMATION

In this paper, we will be looking for WKB solutions (see e.g. Bender
& Orszag 1978) of the form ,

v1(x, y, z, t) = Veiφ(x, y, z, t), (9)

where V is a constant vector matching the dimensions of the system.
We define ω = ∂φ/∂t as the angular frequency and k = ∇φ = (p, q,

Figure 3. Equilibrium Alfvén-speed profile: colour contour of vA(0, y, z)
= |B0(0, y, z)| in the x = 0, yz−plane. Contour is colour coded: 0 ≤ vA ≤
0.1 (blue); 0.1 ≤ vA ≤ 0.5 (green); 0.5 ≤ vA ≤ 1.2 (yellow); 1.2 ≤ vA ≤ 10
(orange); vA ≥ 10 (black). Red lines indicate the magnetic skeleton in this
plane, which is rotationally-symmetric about the z−axis.

r) as the wavevector. For the WKB approach to be applicable, we
consider φ and its derivatives to be large parameters in our system.

In order to isolate one of the different MHD wave modes (i.e.
distinguishing between the fast and slow magnetoacoustic waves
and the Alfvén wave), we now introduce a new set of coordinates
(B0, k, B0 × k). This coordinate system describes all three
directions in space when B 	∝ k, i.e. B0 	= αk, where α is an arbitrary
constant of proportionality. This paper is interested primarily in the
behaviour of the fast wave, which can propagate across magnetic
field lines, and hence such a coordinate system is well suited to
isolating the fast wave behaviour. Note that the work here is also
valid for B0 = αk, but the consequence of which is that the solution
is degenerate and one cannot distinguish between the fast wave and
Alfvén wave (see Appendix A of McLaughlin et al. 2008, for full
derivation).

The WKB approximation (equation 9) is substituted into equa-
tion (7) and we make the WKB approximation such that φ � 1.
Taking the scalar product with the coordinate system described
above yields

⎡
⎢⎢⎣

ω2 0 0

B0 · k)|k|2 ω2 − |B0|2|k|2 0

0 0 ω2 − (B0 · k)2

⎤
⎥⎥⎦

·

⎛
⎜⎜⎝

v1 · B0

v1 · k

v1 · B0 × k

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0

0

0

⎞
⎟⎟⎠

In order to avoid a trivial solution, the determinant of this matrix
must be zero. Hence

ω2(ω2 − |B0|2|k|2)[ω2 − (B0 · k)2] = 0, (10)

which has two solutions: corresponding to the fast magnetoacoustic
mode and the Alfvén mode. The slow magnetoacoustic wave
solution is absent under the cold plasma approximation.
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3.1 WKB solution corresponding to fast magnetoacoustic wave

The fast magnetoacoustic wave is isolated in equation (10) by
making the assumption ω2 	= (B0 · k)2. Therefore, equation (10)
simplifies to

1

2

[
ω2 − (B2

x + B2
y + B2

z )(p2 + q2 + r2)
] = 0

= F(φ,ω, t, B0, k), (11)

where B0 and k have been expanded into component form, and 1/2
has been introduced for convenience later on. Here, F is a first-
order, non-linear partial differential equation, which we solve using
Charpit’s Method (a variation on the method of characteristics,
see e.g. Evans, Blackledge & Yardley 1999). Charpit’s Method
requires that all variables depend upon an independent variable in
characteristic space, which we take as s. Hence, for this system the
relevant Charpit’s Equations are

dφ

ds
=

(
ω

∂

∂ω
+ k · ∂

∂k

)
F,

dω

ds
= −

(
∂

∂t
+ ω

∂

∂φ

)
F,

dk
ds

= −
(

∂

∂r
+ k

∂

∂φ

)
F,

dt

ds
= ∂F

∂ω
,

dr
ds

= ∂F
∂k

,

recalling k = ∇φ = (p, q, r) and r = (x, y, z). This reduces the
first-order partial differential equation in equation (11) to a set of
ordinary differential equations, which are dependent upon only their
initial conditions and evolution s along the characteristic curve. The
relevant initial conditions for the variables are φ0 = φ(s = 0), ω0

= ω(s = 0), t0 = t(s = 0), x0 = x(s = 0), y0 = y(s = 0), z0 =
z(s = 0), p0 = p(s = 0), q0 = q(s = 0), and r0 = r(s = 0). The
equations are progressed numerically from their initial positions and
along their characteristic curve using a fourth-order Runge–Kutta
method. It is worth noting there are no boundary conditions in the
traditional sense: the variables are solved using Charpit’s Method
and the solutions depend only upon the initial position (x0, y0, z0,
t0) and the extent s travelled along the characteristic curve. Hence,
no boundary conditions are imposed and only initial conditions
are required: this is a strength of the WKB approach, whereas for
traditional numerical simulations the choice of boundary conditions
can play a significant role.

Applying Charpit’s Method to equation (11) yields

dφ

ds
= 0,

dω

ds
= 0,

dt

ds
= ω,

dx

ds
= −p|B0|2, dp

ds
=

(
Bx

∂Bx

∂x
+ By

∂By

∂x
+ Bz

∂Bz

∂x

)
|k|2,

dy

ds
= −q|B0|2, dq

ds
=

(
Bx

∂Bx

∂y
+ By

∂By

∂y
+ Bz

∂Bz

∂y

)
|k|2,

dz

ds
= −r|B0|2,

dr

ds
=

(
Bx

∂Bx

∂z
+ By

∂By

∂z
+ Bz

∂Bz

∂z

)
|k|2, (12)

where |B0|2 = Bx
2 + By

2 + Bz
2 and |k|2 = p2 + q2 + r2. All

variables in the system are now dependent only on s and their initial
position. Equation (12) yields some simplifications: φ(x, y, z, t) =
φ0, ω = ω0 and t = ω0s + t0, where φ0, ω0 and t0 are constants.

The following initial conditions are now selected for equa-
tion (12),

ω0 = 2π, t0 = 0, −3 ≤ x0 ≤ 3, −3 ≤ y0 ≤ 3, z0 = 0,

p0 = 0, q0 = 0, r0 = − ω0

|B0(x0, y0, z0)| , (13)

where this set of initial conditions corresponds to a fast magnetoa-
coustic wave being launched from z = z0 = 0 and that is initially
planar in the xy−plane.

Note that the equilibrium magnetic field in equation (8) is
rotationally symmetric about z = 0 and so if equation (12) were
to be presented in cylindrical polar coordinates, say (ζ , θ , z) under
which k = ∇φ = ( ∂φ

∂ζ
, 1

ζ

∂φ

∂θ
, ∂φ

∂z
) = (kζ , kθ , kz) then

dkθ

ds
= B0 · 1

ζ

∂B0

∂θ
|k|2 = 0, (14)

since ∂B0/∂θ = 0. Furthermore, in cylindrical polar coordinates,
initial conditions (13) would be equivalent to kθ = 0 at t = 0 and
so, by equation (14), kθ = 0 for all time. Hence

dr
ds

= ∂F
∂k

⇒ ζdθ

ds
= ∂F

∂kθ

= −kθ |B0|2

⇒ dθ

ds
= − 1

ζ
kθ |B0|2 = 0. (15)

Given that dθ /ds = 0, we predict the ray paths will lie on planes
of constant θ . Note that the confinement of ray paths to planes
of constant θ results from not only the rotationally-symmetric
equilibrium magnetic field but also from our choice of initial
conditions, specifically kθ (t = 0) = 0.

4 FA S T WAV E PRO PAG AT I O N

We now look at the propagation of the fast wave in the neighbour-
hood of our isolated null point and separatrix fan surface. The WKB
approach considers individual elements that are generated at specific
starting points and then gives their 3D position as the element
progresses along their individual characteristic curve. This heralds
two complementary avenues to analysing the wave evolution: we
can follow and visualize the ray paths (or characteristic paths) of
individual wave elements (Section 4.1) or we can construct surfaces
of individual elements at specific times which are equivalent to the
propagation of the wavefront (Section 4.2).

4.1 Ray paths

Figs 4 and 5 plot the ray paths of individual elements from an
initially-planar wave generated along the xy−plane at z = 0. Our
system is rotationally symmetric, so it is sufficient to present the
results in the x = 0, yz−plane. Fig. 4 shows the ray paths for
starting points of −2 ≤ y0 ≤ −0.05 to illustrate the propagation in
the system. We have chosen specific starting points to best illustrate
the overall behaviour: ray paths are plotted at intervals of 0.05 for
−2 ≤ y0 ≤ −0.2, then at intervals of 0.01 for −0.2 ≤ y0 ≤ −0.1,
and then specific ray paths generated from y0 = −0.09 (yellow),
y0 = −0.08 (blue), y0 = −0.07 (orange), y0 = −0.06 (red), and y0

= −0.05 (green). A star at x = y = 0, z = 21/3 − 0.2 = 1.059 92
denotes the 3D null point.

We see that the different ray paths experience refraction, albeit
by varying severities, where individual rays are refracted towards
the null point, i.e. a region of lower Alfvén speed, and are refracted
away from close to x = y = z = 0, i.e. a region of high Alfvén
speed, close to the dipole location. This is in agreement with the
Alfvén-speed profile in Fig. (3). We see that ray paths generated
for y0 ≤ −1.5 do not appear to be influenced greatly by the system
and simply propagate in the direction of increasing z. Ray paths
generated for −1.5 ≤ y0 ≤ −0.1 experience refraction away from
the dipole locus – for some ray paths this manifests as the crossing
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Wave behaviour about null-dome configuration 1395

Figure 4. Ray paths for starting points of x0 = 0, −2 ≤ y0 ≤ −0.05, z0 = 0
to demonstrate the general behaviour in the system. Individual characteristic
curves are plotted at intervals of 0.05 for −2 ≤ y0 ≤ −0.2, intervals of 0.01
for −0.2 ≤ y0 ≤ −0.1, and then specific characteristics starting at y0 =
−0.09 (yellow), y0 = −0.08 (blue), y0 = −0.07 (orange), y0 = −0.06 (red),
and y0 = −0.05 (green), respectively. A star denotes the location of the 3D
null point at x = y = 0, z = 21/3 − 0.2 = 1.059 92.

over of ray paths in the top left corner of the subfigure – and for
ray paths generated closer to the spine, they experience refraction
towards the null – these ray paths propagate at varying angles to the
z−direction. The individual ray paths for y0 = −0.09 (yellow), y0 =
−0.08 (blue), and y0 = −0.07 (orange) are influenced significantly
by the topology, namely refracting towards the null but ultimately
escaping towards the right of the subfigure. The ray path for the
characteristic generated at y0 = −0.06 (red) is first refracted towards
the null point, then is refracted away from the dipole and is then
refracted a second time around the null, before ultimately escaping
the system. Finally, the ray path generated at y0 = −0.05 (green) is
captured fully by the null. It experiences refraction but ultimately
does not escape the system; it spirals into the null point.

In Fig. 5a, the ray paths generated for y0 = −0.062 (blue), y0

= −0.061 (black), and y0 = −0.06 (red) are shown. We present
incremental steps of 0.001 to show that the final directions of the ray
paths can vary substantially, and we can see that all three experience

refraction towards the null and varying levels of refraction away
from the dipole locus. An extreme example of the sensitivity to the
refraction phenomenon can be seen in the ray path generated for
y0 = −0.053 (Fig. 5b). Here, the characteristic undergoes multiple
orbits around the null, before ultimately escaping. This is in contrast
to Fig. 5c which shows the ray path generated for y0 = −0.0525;
here the characteristic spirals into the null and is ultimately captured
by the null. We find that all ray paths generated on x0 = 0, −0.0525
≤ y0 ≤ 0.0525, z0 = 0 are captured by the null point and, due to the
rotational symmetry, we identify this as the critical radius in our
system, rcritical = 0.0525, where ray paths generated on x0, y0, z0 =
0 are captured by the null if x2

0 + y2
0 ≤ rcritical. Note that this is a

critical radius on the z = 0 plane, not a spherical radius surrounding
the null point. In this paper, we limit the spacing between initial
points (our generated wave elements) to incremental steps of 0.0005.

4.2 Wavefront evolution

Let us now consider the wavefront propagation. Fig. 6 shows the
location of the individual elements after a given time which can
be understood as defining the location of the wavefront. Since
t = ω0s + t0, each time corresponds to a particular value of s
(recall s quantifies the evolution along an individual characteristic).
An individual element is therefore described fully by its starting
position (x0, y0, z0) and its evolution along parameter s (note that
z0 is fixed here). Starting positions for x0 = 0, −3 ≤ y0 ≤ 0, z0 =
0 are shown in Fig. 6, and each individual element is plotted as a
cross (with an initially-uniform separation of 0.01) to elucidate the
wave stretching. In each subfigure, the magnetic skeleton (red) in
the yz−plane is shown for context.

We find that the fast wavefront starting between −3 ≤ y0 ≤ 0
propagates in the direction of increasing z away from the lower
boundary z = 0, but not all parts rise uniformly. The part of the
wavefront (approximately −0.45 ≤ y ≤ 0) rises much faster than
the rest, with the maximum occurring at y = 0. This is not due
to the presence of the magnetic skeleton, but instead it is due to
the inhomogeneous Alfvén-speed profile which deforms the wave
from its original planar form and where each individual element
(and therefore that part of the wavefront) propagates with its own
local (Alfvén) speed. The behaviour is well understood from Fig. 3.

The subsequent evolution takes two different forms: First, the
majority of the wavefront is deformed and deflected (dictated by the

(c)(b)(a)

Figure 5. (a) Ray paths generated for y0 = −0.062 (blue), y0 = −0.061 (black), y0 = −0.06 (red). (b) Ray paths from y0 = −0.053. (c) Ray paths from y0 =
−0.0525.
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1396 J. A. McLaughlin et al.

Figure 6. Location of ray paths at various times for WKB approximation of a fast wave generated on boundary x0 = 0, for −3 ≤ y0 ≤ 0, z0 = 0 and its
resultant propagation in the x = 0, yz−plane. Displayed times are chosen to best illustrate evolution and so time between frames is not uniform. The wavefront
consists of crosses from the WKB solution, so as to illustrate clearly the evolution. The magnetic skeleton (red) in the yz−plane is shown for context.

varying equilibrium Alfvén-speed profile) but ultimately escapes
the region and, secondly, a portion of the wave is trapped by the
null point, in agreement with the results in Section 4.1. With two
fates (escape or capture), the wavefront is stretched between its two
ultimate destinations and this stretching manifests as an increase in
the spacing between the crosses.

4.3 3D wave propagation

We can use the WKB solution to plot the 3D ray paths of individual
elements generated at (x0, y0, z0 = 0). Fig. 7 shows the ray paths for
individual elements that start along z0 = 0 and are generated along
the lines y0 = −x0 (Fig. 7a) and y0 = x0 (Fig. 7b), respectively. The
ray paths denoted in green are those generated for y0 = ±0.0525,
i.e. the critical radius of capture, rcritical. For context, the magnetic
skeleton (red) is shown in the plane of generation. As in Section
4.1, we see there are two types of behaviour: Characteristic curves

can be trapped by the null for |x0| ≤ 0.0525 or else escape the null,
where the closer a ray path gets to the null or dipole, the stronger its
deflection by the local Alfvén-speed profile. Fig. 7b also confirms
the ray paths are confined to the azimuthal plane they are generated
in, as predicted from equation (15).

We can also consider the propagation of an entire wavefront (the
3D equivalent of Section 4.2) but, given the ray paths are rotationally
symmetric, there is little extra information to be gained. An example
of a wavefront surface can be found in Appendix B.

5 PE R C E N TAG E O F WAV E C A P T U R E D

5.1 Radius and area of capture

From Section 4.1, we see that there are two types of behaviour: ray
paths can be trapped (by refraction) at the null or else ultimately
escape the null. This allows us to calculate a percentage of the wave
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Wave behaviour about null-dome configuration 1397

(b)(a)

x
y

z z

y
x

Figure 7. 3D ray paths for individual elements generated along z0 = 0 and (a) y0 = −x0 and (b) y0 = x0. Green denotes ray path generated for x0 = ±0.0525,
i.e. captured. The magnetic skeleton (red) in the plane of generation is shown for context.

that is captured by the null. The radius of capture, which was found
to be rcritical = 0.0525, is fixed for the system considered here, but to
calculate a capture percentage we must make a choice for our initial
input area. Note that in this paper we have presented results for initial
conditions −3 ≤ x0 ≤ 3, −3 ≤ y0 ≤ 3 and z0 = 0 (see equation 13)
but since the WKB solution does not involve boundary conditions
(only initial conditions) we would have obtained the same rcritical

for any choice of initial area with |(x0, y0, 0)| ≥ rcritical. Thus, we
are free to choose the initial input area covered by the wavefront,
but will always have a fixed rcritical and therefore (due to rotational
symmetry) a fixed area of capture: π (rcritical)2.

In this paper, we choose to define the initial input area as the
area underneath the dome, i.e. the area defined by the footprint
of the dome at radius

√
R2 − d2 = √

22/3 − 0.04 = 1.243 95 (see
Fig. 2 for a visualization of the dome footprint). Under this
definition, the (non-dimensionalized) area covered by the initially-
planar wavefront is π (R2 − d2) = 4.861 30 and the area of capture is
π (rcritical)2 = 0.008 6590. Thus, the percentage of the wave captured
by the null point is 0.178 per cent.

5.2 Percentage of wave captured varying with null height

The magnetic topology considered so far in this paper (Section
2.2) can be generalized by the introduction of two dimensionless
coefficients into equation (8). These coefficients, say A and B,
can be used to alter the relative strengths of the magnetic dipole
and uniform global field, respectively. A full generalization of
the magnetic topology can be found in Appendix A, which
shows that changing the coefficients can be used to alter the
height of the magnetic null point, whilst preserving the dome
topology.

Generalizing the magnetic topology gives us the opportunity to
investigate how the radius of capture varies with null height. In
order to adjust the null height here, we approach this by varying
A but keeping B and d fixed (B = 1, d = −0.2). Physically, for
A > 1 this is equivalent to considering a stronger, buried dipole that
has the effect of ‘pushing’ the location of the null upwards. This
varies the null height as governed by equation (A2), i.e. znull height =
(2A)1/3 − 0.2. We repeat the analytical work of Section 3 but now
utilizing equation (A1) for our equilibrium magnetic field (note that
initial conditions 13 are still valid).

We find that for each individual null height considered, we always
find a single radius of capture (critical radius) for a given A. This
can be seen in Fig. 8a. We find that the critical radius decreases with
null height, tending to a constant value of rcritical = 0.0470. In this
paper, we limit the spacing of our initial points to incremental steps
of 0.0005: recall the difference in behaviour between Fig. 5b (the
ray path generated for y0 = −0.053 escapes the null) and Fig. 5c
(the ray path generated for y0 = −0.0525 is captured by the null).
Thus, we indicate error bars of ±0.0005 in Fig. 8a. This spatial
sensitivity was checked to be adequate for the most challenging
cases investigated.

We then repeat the calculation of Section 5.1, i.e. we define
the initial input area as the area defined by the footprint of the

separatrix dome at radius
√

( 2A
B )2/3 − d2. Each individual topology

considered (varying A, B = 1, d = −0.2) then has its own radius
of capture, say rcritical,A, and the corresponding area of capture is
always(

rcritical,A2
)

(
2A
B

)2/3
− d2

=
(
rcritical,A2

)
(2A)2/3 − 0.04

.

This can be seen in Fig. 8b. We find that the percentage of the
area under the dome captured decreases with null height.

6 C O N C L U S I O N

We have investigated the behaviour of the fast magnetoacoustic
wave within a separatrix dome magnetic topology that contains
a 3D null point (the fan plane forms the dome). We consider
the linearized MHD equations for an inhomogeneous, ideal, cold
(β = 0) plasma. The equations are solved utilizing the WKB
approximation, followed by Charpit’s Method. The WKB approach
allowed us two complementary avenues to analysing the wave
evolution: We can follow the ray paths of individual wave elements
and can also consider the location of the wavefront at specific times
(equivalent to the propagation of the wavefront).

We find that for a planar fast wave generated below the null
point, the propagation is strongly dependent on its initial location
and there are two main behaviours: the majority of the wave escapes
the null (experiencing different severities of refraction depending
on specific location) and part of the wave is captured by the 3D
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1398 J. A. McLaughlin et al.

(a) (b)

Figure 8. Parametric study of how (a) radius of capture (rcritical) varies with null height, and (b) percentage of area-under-the-dome captured versus null
height. Error bars of ±0.0005 are included.

null. We find that there exists a critical radius in the initial z = 0
plane (there is rotational symmetry about the spine, i.e. the z−axis),
which we call a radius of capture, rcritical, which separates the two
types of behaviour, such that a wave element generated at (x0, y0,
0) is captured by the null provided x2

0 + y2
0 ≤ rcritical. We also find

that the ray paths are confined to the azimuthal plane that they
are generated in, provided they are initialized with no azimuthal
component (as per our initial condition).

Section 4.2 demonstrated that, given the two fates (escape
or capture), the wavefront is stretched between its two ultimate
destinations; this stretching is visualized in Fig. 6 as an increase in
the spacing between the crosses. Note that under the WKB approach,
this (extreme) stretching can manifest, but the wave ‘front’ can
never truly split – the surface is constructed from individual ray
paths (individual crosses) which are independent of each other and
so there is nothing to split. It is expected that in reality stretching
will eventually lead to steep gradients facilitating a genuine splitting
of the front due to enhanced visco-resistive dissipation (essentially,
this is ‘phase mixing’ due to the field inhomogeneity around the
null, see e.g. Heyvaerts & Priest 1982; Nakariakov et al. 1997;
Botha et al. 2000; McLaughlin et al. 2011a). However, the WKB
approach as presented here does not capture such physics.

We also present a generalization of the magnetic topology in
Appendix A by introducing dimensionless coefficients A and B,
which are used to alter the relative strengths of the magnetic dipole
and uniform global field, respectively. We find that mathematically
the separatrix surface will always be the surface of a sphere
described by x2 + y2 + (z − d)2 = ( 2A

B )2/3, corresponding to a

null height of ( 2A
B )1/3 + d , and with a circular footprint of radius√

( 2A
B )2/3 − d2 (valid for d ≤ 0). Thus, changing coefficients A

and B can be used to alter the height of the magnetic null point,
whilst – crucially – preserving the dome topology. We note that
the magnetic field considered in Section 2.2 can be recovered by
setting A = B = 1. The height of the null can also be controlled by
modifying d.

For the magnetic topology described in Section 2.2, we find
rcritical = 0.0525. In this paper, we limit the spacing of our initial
condition to incremental steps of 0.0005, but the resolution of
our Runge–Kutta approach could be improved to consider smaller
incremental steps if required. Utilizing our generalization of the
magnetic topology, we also conducted a parametric study of how
rcritical varies with null height. We find that the value of the critical
radius decreases as the height of the null increases. We also find
that the critical radius (as a function of null height) tends towards a
constant value of 0.0470.

We also calculated the percentage of the wave that is captured by
the null. We find that rcritical is fixed once the specific topology for
the system is chosen, but that we have a free choice to define what
we consider as the initial input. In this paper, we chose the initial
input to be the area defined by the footprint of the dome on our
model photosphere (z = 0). Under this definition, the percentage
of the wave captured by the null point considered in Section 2.2 is
0.178 per cent. We also utilized our parametric study to find that
the percentage captured of the area under the dome decreases with
null height, and that, for the parameters considered, the percentage
is never greater than 3 per cent.

We have limited our investigation to understanding the fast wave
in the cold plasma limit, but we could have also investigated the
second root of equation (10) by assuming ω2 	= |B0|2|k|2. This
would yield the equations governing the Alfvén wave behaviour.

It is also possible to extend the work in this paper by dropping
the cold plasma assumption, which will lead to a third root of
equation (10) which will correspond to the behaviour of the slow
magnetoacoustic wave, and also allow for acoustic contributions
to the fast speed (i.e. vfast

2 = v2
A + c2

s is possible), where cs is the
sound speed, with fast waves taking on a predominantly-acoustic
character in the very close vicinity of the null (as B0 → 0). This
will modify equation (7) such that

∂2v1

∂t2
= c2

s ∇ (∇ · v1) + {∇ × [∇ × (v1 × B0)]} × B0. (16)

Equation (16) is derived in the same way as equation (7), but without
making the assumption of a cold plasma. A full investigation of
equation (16) is outside the scope of this paper, but we do note
that both equations (16) and (7) are valid for any suitable choice
of equilibrium magnetic field, B0. In other words, the 3D WKB
technique described in this paper can be both applied to other
magnetic configurations and extended further (e.g. by dropping
the cold plasma assumption), although there are also limitations of
such approaches – see the conclusions of McLaughlin et al. (2016).
For further information on the WKB method and the wider-family
of ray tracing methods, see Tracey et al. (2014).

Our results show that it is the location of the null point (which
denotes the global minimum of our equilibrium Alfvén-speed
profile) as well as distance relative to x = y = z = 0 (the
point in our domain closest to the location of the buried dipole,
corresponding to the global maximum) that play key roles in the fast
wave propagation. Conversely, we find that the separatrix surface
itself does not play a role, and the separatrix fan surface does not
align with any key features in the equilibrium Alfvén-speed profile.
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Wave behaviour about null-dome configuration 1399

Previous work highlighted that the equilibrium Alfvén-speed profile
plays a key role in dictating the propagation of the fast wave (e.g. see
McLaughlin et al. 2011b), and we conclude that our results support
this idea. Note that within the cold-plasma conditions studied here
the separatrix surfaces play no role, but it has been shown, e.g.
by Tarr et al. (2017), that separatrix surfaces do play an important
role in guiding slow magnetoacoustic waves, and that these can be
generated from fast-mode waves via mode conversion around the
null for a β 	= 0 plasma (see McLaughlin & Hood 2006b and Tarr
et al. 2017 for discussions of mode coupling about null points). So
if the model in this paper was extended beyond the cold-plasma
assumption, mode conversion would be expected to occur and so
separatrix surfaces could play an important role (for the generated
slow waves).

In this paper, we find that the fast wave experiences a complex
refraction effect and that this refraction effect is a key feature of fast
wave propagation within inhomogeneous media. This refraction
effect causes upwardly-propagating waves originating from below
the null point to be attracted to and trapped in the close vicinity of the
null, provided the wave-packet originates sufficiently close to the
spine field line (the requirements for which we have quantified).
Such waves in our model are physically representative of, say,
upwardly-propagating fast-mode waves transmitted from the top
of the transition region. Thus, the energy associated with such
waves will collect preferentially on small scales near the null,
where a number of physical processes may occur to subsequently
dissipate or convert the energy to other forms, namely localized
current sheet formation, the triggering of magnetic reconnection,
and enhanced visco-resistive dissipation of energy brought into the
null by the waves (see Thurgood et al. 2017, 2018a,b for details
of such physics close to the null). The findings presented in this
paper, in a physically-representative null-point-containing field,
that wave energy does indeed collect near null points also justifies
independently the often a priori initial conditions of models which
consider the specific details of subsequent phenomena occurring
close to the null (due to non-linear and non-ideal processes, such
studies often involve full MHD simulation of a small domain close
to the null, with the assumption that some externally-originating
wave has impinged upon the immediate neighbourhood of the null
point as a necessary simplification).

Thus, we deduce that 3D coronal null points whose fan field lines
form a dome – a common feature in the solar corona as revealed in
potential field extrapolations – will be preferential locations of fast
wave energy collection and deposition, where associated magnetic
reconnection and visco-resistive heating can then occur. We find
that only a small percentage of initial wave energy will be captured
by the null, but in spite of this, the strong refraction effect will
still focus that wave energy into a specific location of the magnetic
topology and it is at this area where preferential heating will occur.
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APPENDI X A : G ENERALI SED MAGNETIC
TO P O L O G Y

The magnetic topology considered in Section 2.2 can be gener-
alized by the introduction of two dimensionless coefficients into
equation (8). These coefficients, say A and B, can be used to alter
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the relative strengths of the magnetic dipole and uniform global
field, respectively. This alters equation (8) giving

Bx = −A
{

3x(z − d)[
x2 + y2 + (z − d)2

]5/2

}
,

By = −A
{

3y(z − d)[
x2 + y2 + (z − d)2

]5/2

}
,

Bz = A
{

x2 + y2 − 2(z − d)2[
x2 + y2 + (z − d)2

]5/2

}
+ B. (A1)

Recall that the dipole is placed at r0 = (0, 0, d), where |d| is the
depth below our model photosphere (z = 0).

The null height can be calculated using the following ratio of
coefficients

znull height =
(

2A
B

)1/3

+ d, (A2)

where this ratio is computed by setting B0 = 0 and due to the
rotational symmetry must lie along x = y = 0.

The equilibrium vector potential is calculated via

Atotal = Adipole + Auniform field

= A
(

y[
x2 + y2 + (z − d)2

]3/2 , − x[
x2 + y2 + (z − d)2

]3/2 , 0

)

+B
(
−y

2
,
x

2
, 0
)

. (A3)

Note there is symmetry under x → −y. Therefore, we may consider
the x = 0, yz−plane for further insight. Considering x = 0, the
x̂−component of equation (A3) gives

x̂ · Atotal = Ay[
y2 + (z − d)2

]3/2 − By

2
.

The separatrix surface is found when this is equal to zero. One
solution to this is y = 0; this is the spine. The solution where y 	= 0
yields

y2 + (z − d)2 =
(

2A
B

)2/3

.

Hence, mathematically the separatrix surface will always be the
surface of a sphere described by x2 + y2 + (z − d)2 = ( 2A

B )2/3. This
means the separatrix surface will always be a spherical dome of
height znull height = ( 2A

B )1/3 + d , in agreement with equation (A2),

and with a circular footprint of radius
√

( 2A
B )2/3 − d2, valid for d

≤ 0.
Thus, changing the coefficients A and B can be used to alter

the height of the magnetic null point, whilst preserving the dome

topology. Note that the height of the null can also be controlled by
modifying d. The magnetic field considered in Section 2.2 can be
recovered by setting A = B = 1.

APPENDI X B: THREE-DI MENSI ONA L
WAV E F RO N T SU R FAC E S

We can also consider the propagation of an entire wavefront (the
3D equivalent of Section 4.2). Fig. B1 shows the location of the
wavefront at t = 0.5, showing the behaviour of the initially-planar
wavefront that was generated on −2 ≤ x0 ≤ 2, −2 ≤ y0 ≤ 2, z0 = 0.
The surface is presented as a mesh, with an initially-uniform point

x
y

z

Figure B1. Location of the wavefront at t = 0.5 for initially-planar
wavefront generated on −2 ≤ x0 ≤ 2, −2 ≤ y0 ≤ 2, z0 = 0. The red
block denotes the location of the null (0, 0, 1.059 92).

spacing.3 A red block denotes the location of the null (0, 0, 1.059 92).
We see that the wavefront propagates in the direction of increasing
z and that the wavefront is distorted (it is initially planar at z0 =
0). The parts of the wavefront closest to the null are propagating
at a lower speed than those around it, resulting in a local trough
forming under the null. Again, the behaviour is entirely dictated by
the inhomogeneous equilibrium Alfvén-speed profile.

Fig. B1 is the 3D companion of the t = 0.5 subfigure in Fig. 6.
From the results in Section 4.2, we know that at later times the
wavefront begins wrapping around the null and so the wavefront
become distorted significantly, i.e. there is little extra information
to be gained from looking at wavefront surfaces at later times.
Hence, we only present a single wavefront surface in Fig. B1.

3For clarity of presentation in Fig. B1, we present a spacing of only 1 in
every 10 points used to construct the surface.
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