92 research outputs found

    Motivating Reluctant Learners with a Big Bang

    Get PDF
    We present results of a collaboration between a media specialist, a science teacher, and an astronomer to bring a modern astronomy topic to at-risk, emotionally disabled students who have experienced little success. These normally unengaged students became highly motivated because they were given an authentic task of presenting research on an intriguing science topic, and because they witnessed a collaboration brought together on their behalf This experience demonstrates that sophisticated astronomy topics can be used to motivate at-risk students

    Bayesian inference for radio observations

    Get PDF
    New telescopes like the Square Kilometre Array (SKA) will push into a new sensitivity regime and expose systematics, such as direction-dependent effects, that could previously be ignored. Current methods for handling such systematics rely on alternating best estimates of instrumental calibration and models of the underlying sky, which can lead to inadequate uncertainty estimates and biased results because any correlations between parameters are ignored. These deconvolution algorithms produce a single image that is assumed to be a true representation of the sky, when in fact it is just one realization of an infinite ensemble of images compatible with the noise in the data. In contrast, here we report a Bayesian formalism that simultaneously infers both systematics and science. Our technique, Bayesian Inference for Radio Observations (BIRO), determines all parameters directly from the raw data, bypassing image-making entirely, by sampling from the joint posterior probability distribution. This enables it to derive both correlations and accurate uncertainties, making use of the flexible software meqtrees to model the sky and telescope simultaneously. We demonstrate BIRO with two simulated sets of Westerbork Synthesis Radio Telescope data sets. In the first, we perform joint estimates of 103 scientific (flux densities of sources) and instrumental (pointing errors, beamwidth and noise) parameters. In the second example, we perform source separation with BIRO. Using the Bayesian evidence, we can accurately select between a single point source, two point sources and an extended Gaussian source, allowing for ‘super-resolution' on scales much smaller than the synthesized bea

    Wide-field Multi-object Spectroscopy to Enhance Dark Energy Science from LSST

    Get PDF
    LSST will open new vistas for cosmology in the next decade, but it cannot reach its full potential without data from other telescopes. Cosmological constraints can be greatly enhanced using wide-field (>20>20 deg2^2 total survey area), highly-multiplexed optical and near-infrared multi-object spectroscopy (MOS) on 4-15m telescopes. This could come in the form of suitably-designed large surveys and/or community access to add new targets to existing projects. First, photometric redshifts can be calibrated with high precision using cross-correlations of photometric samples against spectroscopic samples at 0<z<30 < z < 3 that span thousands of sq. deg. Cross-correlations of faint LSST objects and lensing maps with these spectroscopic samples can also improve weak lensing cosmology by constraining intrinsic alignment systematics, and will also provide new tests of modified gravity theories. Large samples of LSST strong lens systems and supernovae can be studied most efficiently by piggybacking on spectroscopic surveys covering as much of the LSST extragalactic footprint as possible (up to ∼20,000\sim20,000 square degrees). Finally, redshifts can be measured efficiently for a high fraction of the supernovae in the LSST Deep Drilling Fields (DDFs) by targeting their hosts with wide-field spectrographs. Targeting distant galaxies, supernovae, and strong lens systems over wide areas in extended surveys with (e.g.) DESI or MSE in the northern portion of the LSST footprint or 4MOST in the south could realize many of these gains; DESI, 4MOST, Subaru/PFS, or MSE would all be well-suited for DDF surveys. The most efficient solution would be a new wide-field, highly-multiplexed spectroscopic instrument in the southern hemisphere with >6>6m aperture. In two companion white papers we present gains from deep, small-area MOS and from single-target imaging and spectroscopy.Comment: Submitted to the call for Astro2020 science white papers; tables with estimates of telescope time needed for a supernova host survey can be seen at http://d-scholarship.pitt.edu/id/eprint/3604

    Deep Multi-object Spectroscopy to Enhance Dark Energy Science from LSST

    Get PDF
    Community access to deep (i ~ 25), highly-multiplexed optical and near-infrared multi-object spectroscopy (MOS) on 8-40m telescopes would greatly improve measurements of cosmological parameters from LSST. The largest gain would come from improvements to LSST photometric redshifts, which are employed directly or indirectly for every major LSST cosmological probe; deep spectroscopic datasets will enable reduced uncertainties in the redshifts of individual objects via optimized training. Such spectroscopy will also determine the relationship of galaxy SEDs to their environments, key observables for studies of galaxy evolution. The resulting data will also constrain the impact of blending on photo-z's. Focused spectroscopic campaigns can also improve weak lensing cosmology by constraining the intrinsic alignments between the orientations of galaxies. Galaxy cluster studies can be enhanced by measuring motions of galaxies in and around clusters and by testing photo-z performance in regions of high density. Photometric redshift and intrinsic alignment studies are best-suited to instruments on large-aperture telescopes with wider fields of view (e.g., Subaru/PFS, MSE, or GMT/MANIFEST) but cluster investigations can be pursued with smaller-field instruments (e.g., Gemini/GMOS, Keck/DEIMOS, or TMT/WFOS), so deep MOS work can be distributed amongst a variety of telescopes. However, community access to large amounts of nights for surveys will still be needed to accomplish this work. In two companion white papers we present gains from shallower, wide-area MOS and from single-target imaging and spectroscopy.Comment: Science white paper submitted to the Astro2020 decadal survey. A table of time requirements is available at http://d-scholarship.pitt.edu/36036

    Bayesian Inference for Radio Observations - Going beyond deconvolution

    Get PDF
    Radio interferometers suffer from the problem of missing information in their data, due to the gaps between the antennae. This results in artifacts, such as bright rings around sources, in the images obtained. Multiple deconvolution algorithms have been proposed to solve this problem and produce cleaner radio images. However, these algorithms are unable to correctly estimate uncertainties in derived scientific parameters or to always include the effects of instrumental errors. We propose an alternative technique called Bayesian Inference for Radio Observations (BIRO) which uses a Bayesian statistical framework to determine the scientific parameters and instrumental errors simultaneously directly from the raw data, without making an image. We use a simple simulation of Westerbork Synthesis Radio Telescope data including pointing errors and beam parameters as instrumental effects, to demonstrate the use of BIR

    MeerKLASS: MeerKAT Large Area Synoptic Survey

    Full text link
    We discuss the ground-breaking science that will be possible with a wide area survey, using the MeerKAT telescope, known as MeerKLASS (MeerKAT Large Area Synoptic Survey). The current specifications of MeerKAT make it a great fit for science applications that require large survey speeds but not necessarily high angular resolutions. In particular, for cosmology, a large survey over ∼4,000 deg2\sim 4,000 \, {\rm deg}^2 for ∼4,000\sim 4,000 hours will potentially provide the first ever measurements of the baryon acoustic oscillations using the 21cm intensity mapping technique, with enough accuracy to impose constraints on the nature of dark energy. The combination with multi-wavelength data will give unique additional information, such as exquisite constraints on primordial non-Gaussianity using the multi-tracer technique, as well as a better handle on foregrounds and systematics. Such a wide survey with MeerKAT is also a great match for HI galaxy studies, providing unrivalled statistics in the pre-SKA era for galaxies resolved in the HI emission line beyond local structures at z > 0.01. It will also produce a large continuum galaxy sample down to a depth of about 5\,μ\muJy in L-band, which is quite unique over such large areas and will allow studies of the large-scale structure of the Universe out to high redshifts, complementing the galaxy HI survey to form a transformational multi-wavelength approach to study galaxy dynamics and evolution. Finally, the same survey will supply unique information for a range of other science applications, including a large statistical investigation of galaxy clusters as well as produce a rotation measure map across a huge swathe of the sky. The MeerKLASS survey will be a crucial step on the road to using SKA1-MID for cosmological applications and other commensal surveys, as described in the top priority SKA key science projects (abridged).Comment: Larger version of the paper submitted to the Proceedings of Science, "MeerKAT Science: On the Pathway to the SKA", Stellenbosch, 25-27 May 201
    • …
    corecore