846 research outputs found

    Restoring Ureagenesis in Hepatocytes by CRISPR/Cas9-mediated Genomic Addition to Arginase-deficient Induced Pluripotent Stem Cells.

    Get PDF
    Urea cycle disorders are incurable enzymopathies that affect nitrogen metabolism and typically lead to hyperammonemia. Arginase deficiency results from a mutation in Arg1, the enzyme regulating the final step of ureagenesis and typically results in developmental disabilities, seizures, spastic diplegia, and sometimes death. Current medical treatments for urea cycle disorders are only marginally effective, and for proximal disorders, liver transplantation is effective but limited by graft availability. Advances in human induced pluripotent stem cell research has allowed for the genetic modification of stem cells for potential cellular replacement therapies. In this study, we demonstrate a universally-applicable CRISPR/Cas9-based strategy utilizing exon 1 of the hypoxanthine-guanine phosphoribosyltransferase locus to genetically modify and restore arginase activity, and thus ureagenesis, in genetically distinct patient-specific human induced pluripotent stem cells and hepatocyte-like derivatives. Successful strategies restoring gene function in patient-specific human induced pluripotent stem cells may advance applications of genetically modified cell therapy to treat urea cycle and other inborn errors of metabolism

    Blockade of SARS-CoV-2 Spike Protein-Mediated Cell–Cell Fusion Using COVID-19 Convalescent Plasma

    Get PDF
    The recent COVID-19 pandemic poses a serious threat to global public health, thus there is an urgent need to define the molecular mechanisms involved in SARS-CoV-2 spike (S) protein-mediated virus entry that is essential for preventing and/or treating this emerging infectious disease. In this study, we examined the blocking activity of human COVID-19 convalescent plasma by cell–cell fusion assays using SARS-CoV-2-S-transfected 293 T as effector cells and ACE2-expressing 293 T as target cells. We demonstrate that the SARS-CoV-2 S protein exhibits a very high capacity for membrane fusion and is efficient in mediating virus fusion and entry into target cells. Importantly, we find that COVID-19 convalescent plasma with high titers of IgG neutralizing antibodies can block cell–cell fusion and virus entry by interfering with the SARS-CoV-2-S/ACE2 or SARS-CoV-S/ACE2 interactions. These findings suggest that COVID-19 convalescent plasma may not only inhibit SARS-CoV-2-S but also cross-neutralize SARS-CoV-S-mediated membrane fusion and virus entry, supporting its potential as a preventive and/or therapeutic agent against SARS-CoV-2 as well as other SARS-CoV infections

    A Matter of Life or Death: Productively Infected and Bystander CD4 T Cells in Early HIV Infection

    Get PDF
    CD4 T cell death or survival following initial HIV infection is crucial for the development of viral reservoirs and latent infection, making its evaluation critical in devising strategies for HIV cure. Here we infected primary CD4 T cells with a wild-type HIV-1 and investigated the death and survival mechanisms in productively infected and bystander cells during early HIV infection. We found that HIV-infected cells exhibited increased programmed cell death, such as apoptosis, pyroptosis, and ferroptosis, than uninfected cells. However, productively infected (p24+) cells and bystander (p24-) cells displayed different patterns of cell death due to differential expression of pro-/anti-apoptotic proteins and signaling molecules. Cell death was triggered by an aberrant DNA damage response (DDR), as evidenced by increases in γH2AX levels, which inversely correlated with telomere length and telomerase levels during HIV infection. Mechanistically, HIV-infected cells exhibited a gradual shortening of telomeres following infection. Notably, p24+ cells had longer telomeres compared to p24- cells, and telomere length positively correlated with the telomerase, pAKT, and pATM expressions in HIV-infected CD4 T cells. Importantly, blockade of viral entry attenuated the HIV-induced inhibition of telomerase, pAKT, and pATM as well as the associated telomere erosion and cell death. Moreover, ATM inhibition promoted survival of HIV-infected CD4 T cells, especially p24+ cells, and rescued telomerase and AKT activities by inhibiting cell activation, HIV infection, and DDR. These results indicate that productively infected and bystander CD4 T cells employ different mechanisms for their survival and death, suggesting a possible pro-survival, pro-reservoir mechanism during early HIV infection

    Long Non-Coding RNA GAS5 Regulates T Cell Functions via miR21-Mediated Signaling in People Living With HIV

    Get PDF
    T cells are critical for the control of viral infections and T cell responses are regulated by a dynamic network of non-coding RNAs, including microRNAs (miR) and long non-coding RNAs (lncRNA). Here we show that an activation-induced decline of lncRNA growth arrest-specific transcript 5 (GAS5) activates DNA damage response (DDR), and regulates cellular functions and apoptosis in CD4 T cells derived from people living with HIV (PLHIV) via upregulation of miR-21. Notably, GAS5-miR21-mediated DDR and T cell dysfunction are observed in PLHIV on antiretroviral therapy (ART), who often exhibit immune activation due to low-grade inflammation despite robust virologic control. We found that GAS5 negatively regulates miR-21 expression, which in turn controls critical signaling pathways involved in DNA damage and cellular response. The sustained stimulation of T cells decreased GAS5, increased miR-21 and, as a result, caused dysfunction and apoptosis in CD4 T cells. Importantly, this inflammation-driven T cell over-activation and aberrant apoptosis in ART-controlled PLHIV and healthy subjects (HS) could be reversed by antagonizing the GAS5-miR-21 axis. Also, mutation of the miR-21 binding site on exon 4 of GAS5 gene to generate a GAS5 mutant abolished its ability to regulate miR-21 expression as well as T cell activation and apoptosis markers compared to the wild-type GAS5 transcript. Our data suggest that GAS5 regulates TCR-mediated activation and apoptosis in CD4 T cells during HIV infection through miR-21-mediated signaling. However, GAS5 effects on T cell exhaustion during HIV infection may be mediated by a mechanism beyond the GAS5-miR-21-mediated signaling. These results indicate that targeting the GAS5-miR-21 axis may improve activity and longevity of CD4 T cells in ART-treated PLHIV. This approach may also be useful for targeting other infectious or inflammatory diseases associated with T cell over-activation, exhaustion, and premature immune aging

    Super-transport of Excitons in Atomically Thin Organic Semiconductors at the 2D Quantum Limit

    Get PDF
    Long-range and fast transport of coherent excitons is important for development of high-speed excitonic circuits and quantum computing applications. However, most of these coherent excitons have only been observed in some low-dimensional semiconductors when coupled with cavities, as there are large inhomogeneous broadening and dephasing effects on the exciton transport in their native states of the materials. Here, by confining coherent excitons at the 2D quantum limit, we firstly observed molecular aggregation enabled super-transport of excitons in atomically thin two-dimensional (2D) organic semiconductors between coherent states, with a measured a high effective exciton diffusion coefficient of 346.9 cm2/sec at room temperature. This value is one to several orders of magnitude higher than the reported values from other organic molecular aggregates and low-dimensional inorganic materials. Without coupling to any optical cavities, the monolayer pentacene sample, a very clean 2D quantum system (1.2 nm thick) with high crystallinity (J type aggregation) and minimal interfacial states, showed superradiant emissions from the Frenkel excitons, which was experimentally confirmed by the temperature-dependent photoluminescence (PL) emission, highly enhanced radiative decay rate, significantly narrowed PL peak width and strongly directional in-plane emission. The coherence in monolayer pentacene samples was observed to be delocalized over 135 molecules, which is significantly larger than the values (a few molecules) observed from other organic thin films. In addition, the super-transport of excitons in monolayer pentacene samples showed highly anisotropic behaviour. Our results pave the way for the development of future high-speed excitonic circuits, fast OLEDs, and other opto-electronic devices

    Efficacy of probucol on cognitive function in Alzheimer's disease: study protocol for a double-blind, placebo-controlled, randomised phase II trial (PIA study).

    Get PDF
    INTRODUCTION: Preclinical, clinical and epidemiological studies support the hypothesis that aberrant systemic metabolism of amyloid beta (Aβ) in the peripheral circulation is causally related to the development of Alzheimer's disease (AD). Specifically, recent studies suggest that increased plasma concentrations of lipoprotein-Aβ compromise the brain microvasculature, resulting in extravasation and retention of the lipoprotein-Aβ moiety. The latter results in an inflammatory response and neurodegeneration ensues. Probucol, a historic cholesterol-lowering drug, has been shown in murine models to suppress lipoprotein-Aβ secretion, concomitant with maintaining blood-brain-barrier function, suppressing neurovascular inflammation and supporting cognitive function. This protocol details the probucol in Alzheimer's study, a drug intervention trial investigating if probucol has potential to attenuate cognitive decline, delay brain atrophy and reduce cerebral amyloid burden in patients with mild-to-moderate AD. METHODS AND ANALYSIS: The study is a phase II, randomised, placebo-controlled, double-blind single-site clinical trial held in Perth, Australia. The target sample is 314 participants with mild-to-moderate AD. Participants will be recruited and randomised (1:1) to a 104-week intervention consisting of placebo induction for 2 weeks followed by 102 weeks of probucol (Lorelco) or placebo. The primary outcome is changed in cognitive performance determined via the Alzheimer's Disease Assessment Scales-Cognitive Subscale test between baseline and 104 weeks. Secondary outcomes measures will be the change in brain structure and function, cerebral amyloid load, quality of life, and the safety and tolerability of Lorelco, after a 104week intervention. ETHICS AND DISSEMINATION: The study has been approved by the Bellberry Limited Human Research Ethics Committee (approval number: HREC2019-11-1063; Version 4, 6 October 2021). Informed consent will be obtained from participants prior to any study procedures being performed. The investigator group will disseminate study findings through peer-reviewed publications, key conferences and local stakeholder events. TRIAL REGISTRATION NUMBER: Australian New Zealand Clinical Trials Registry (ACTRN12621000726853)
    • …
    corecore