1,850 research outputs found

    Tuning the metamagnetism of an antiferromagnetic metal

    Get PDF
    We describe a `disordered local moment' (DLM) first-principles electronic structure theory which demonstrates that tricritical metamagnetism can arise in an antiferromagnetic metal due to the dependence of local moment interactions on the magnetisation state. Itinerant electrons can therefore play a defining role in metamagnetism in the absence of large magnetic anisotropy. Our model is used to accurately predict the temperature dependence of the metamagnetic critical fields in CoMnSi-based alloys, explaining the sensitivity of metamagnetism to Mn-Mn separations and compositional variations found previously. We thus provide a finite-temperature framework for modelling and predicting new metamagnets of interest in applications such as magnetic cooling

    Cosmic Reionization and the 21-cm signal: Comparison between an analytical model and a simulation

    Get PDF
    We measure several properties of the reionization process and the corresponding low-frequency 21-cm signal associated with the neutral hydrogen distribution, using a large volume, high resolution simulation of cosmic reionization. The brightness temperature of the 21-cm signal is derived by post-processing this numerical simulation with a semi-analytical prescription. Our study extends to high redshifts (z ~ 25) where, in addition to collisional coupling, our post-processed simulations take into account the inhomogeneities in the heating of the neutral gas by X-rays and the effect of an inhomogeneous Lya radiation field. Unlike the well-studied case where spin temperature is assumed to be significantly greater than the temperature of the cosmic microwave background due to uniform heating of the gas by X-rays, spatial fluctuations in both the Lya radiation field and X-ray intensity impact predictions related to the brightness temperature at z > 10, during the early stages of reionization and gas heating. The statistics of the 21-cm signal from our simulation are then compared to existing analytical models in the literature and we find that these analytical models provide a reasonably accurate description of the 21-cm power spectrum at z < 10. Such an agreement is useful since analytical models are better suited to quickly explore the full astrophysical and cosmological parameter space relevant for future 21-cm surveys. We find, nevertheless, non-negligible differences that can be attributed to differences in the inhomogeneous X-ray heating and Lya coupling at z > 10 and, with upcoming interferometric data, these differences in return can provide a way to better understand the astrophysical processes during reionization.Comment: Major paper revision to match version accepted for publication in ApJ. Simulation now fully includes fluctuations in the X-ray heating and the Lya radiation field. 18 pages, 13 figure

    Genetic Diversity of norA, Coding for a Main Efflux Pump of Staphylococcus aureus

    Get PDF
    Funding Information: This work was partially supported by Fundação para a Ciência e a Tecnologia (FCT, Portugal), through funds to GHTM – UID/Multi/04413/2013. SC was supported by grant SFRH/BPD/97508/2013 from FCT, Portugal. TC was funded by the Medical Research Council United Kingdom (Grant Nos. MR/K000551/1, MR/M01360X/1, MR/N010469/1, and MR/R020973/1) and BBSRC United Kingdom (BB/R013063/1). BS was funded by the Medical Research Council United Kingdom (Grant No. MR/N010469/1). Publisher Copyright: © 2007 - 2019 Frontiers Media S.A. All Rights Reserved.NorA is the best studied efflux system of Staphylococcus aureus and therefore frequently used as a model for investigating efflux-mediated resistance in this pathogen. NorA activity is associated with resistance to fluoroquinolones, several antiseptics and disinfectants and several reports have pointed out the role of efflux systems, including NorA, as a first-line response to antimicrobials in S. aureus. Genetic diversity studies of the gene norA have described three alleles; norAI, norAII and norAIII. However, the epidemiology of these alleles and their impact on NorA activity remains unclear. Additionally, increasing studies do not account for norA variability when establishing relations between resistance phenotypes and norA presence or reported absence, which actually corresponds, as we now demonstrate, to different norA alleles. In the present study we assessed the variability of the norA gene present in the genome of over 1,000 S. aureus isolates, corresponding to 112 S. aureus strains with whole genome sequences publicly available; 917 MRSA strains sourced from a London-based study and nine MRSA isolates collected in a major Hospital in Lisbon, Portugal. Our analyses show that norA is part of the core genome of S. aureus. It also suggests that occurrence of norA variants reflects the population structure of this major pathogen. Overall, this work highlights the ubiquitous nature of norA in S. aureus which must be taken into account when studying the role played by this important determinant on S. aureus resistance to antimicrobials.publishersversionpublishe

    HUMAN-CENTERED DESIGN OF THE HUMAN-SYSTEM INTERFACES OF MEDICAL EQUIPMENT: THYROID UPTAKE SYSTEM

    Get PDF
    Technology plays an important role in modern medical centers, making healthcare increasingly complex, relying on complex technical equipment. This technical complexity is particularly noticeable in the nuclear medicine. Poorly design human–system interfaces can increase the risks for human error. The human-centered approach emphasizes the development of the equipment with a deep understanding of the users activities, current work practices, needs and abilities of the users. An important concept of human-centered design is that the ease-of-use of the equipment can be ensured only if users are actively incorporated in all phases of the life cycle of design process. Representative groups of users are exposed to the equipment at various stages in development, in a variety of testing, evaluation and interviewing situations. The users feedback obtained is then used to refine the design, with the result serving as input to the next interaction of design process. The limits of the approach are that the users cannot address any particular future needs without prior experience or knowledge about the equipment operation. The aim of this paper is to present a methodological framework that contributes to the design of the human-system interfaces, through an approach related to the users and their activities. A case study is described in which the methodological framework is being applied in development of new human-system interfaces of the thyroid uptake system

    MeerKLASS: MeerKAT Large Area Synoptic Survey

    Full text link
    We discuss the ground-breaking science that will be possible with a wide area survey, using the MeerKAT telescope, known as MeerKLASS (MeerKAT Large Area Synoptic Survey). The current specifications of MeerKAT make it a great fit for science applications that require large survey speeds but not necessarily high angular resolutions. In particular, for cosmology, a large survey over 4,000deg2\sim 4,000 \, {\rm deg}^2 for 4,000\sim 4,000 hours will potentially provide the first ever measurements of the baryon acoustic oscillations using the 21cm intensity mapping technique, with enough accuracy to impose constraints on the nature of dark energy. The combination with multi-wavelength data will give unique additional information, such as exquisite constraints on primordial non-Gaussianity using the multi-tracer technique, as well as a better handle on foregrounds and systematics. Such a wide survey with MeerKAT is also a great match for HI galaxy studies, providing unrivalled statistics in the pre-SKA era for galaxies resolved in the HI emission line beyond local structures at z > 0.01. It will also produce a large continuum galaxy sample down to a depth of about 5\,μ\muJy in L-band, which is quite unique over such large areas and will allow studies of the large-scale structure of the Universe out to high redshifts, complementing the galaxy HI survey to form a transformational multi-wavelength approach to study galaxy dynamics and evolution. Finally, the same survey will supply unique information for a range of other science applications, including a large statistical investigation of galaxy clusters as well as produce a rotation measure map across a huge swathe of the sky. The MeerKLASS survey will be a crucial step on the road to using SKA1-MID for cosmological applications and other commensal surveys, as described in the top priority SKA key science projects (abridged).Comment: Larger version of the paper submitted to the Proceedings of Science, "MeerKAT Science: On the Pathway to the SKA", Stellenbosch, 25-27 May 201

    A DYNAMOMETRIC SYSTEM FOR STUDIES OF BALANCE WHILE QUIET STANDING (PROTOTYPE)

    Get PDF
    Studies on balance while quiet standing are frequently conducted through the measurement of the Center of Pressure (COP). Usually, a triaxial force platform is used in such studies, where the horizontal forces can be considered negligible. However, the cost of such instrument is a high limitation for research in this field. Considering that vertical reactions are significant they can be used to measure COP oscillations. This work describes the development of an inexpensive uniaxial dynamometric system to be used in balance studies

    Spectroscopic size and thickness metrics for liquid-exfoliated h-BN

    Get PDF
    For many 2D materials, optical and Raman spectra are richly structured, and convey information on a range of parameters including nanosheet size and defect content. By contrast, the equivalent spectra for h-BN are relatively simple, with both the absorption and Raman spectra consisting of a single feature each, disclosing relatively little information. Here, the ability to size-select liquid-exfoliated h-BN nanosheets has allowed us to comprehensively study the dependence of h-BN optical spectra on nanosheet dimensions. We find the optical extinction coefficient spectrum to vary systematically with nanosheet lateral size due to the presence of light scattering. Conversely, once light scattering has been decoupled to give the optical absorbance spectra, we find the size dependence to be mostly removed save for a weak but well-defined variation in energy of peak absorbance with nanosheet thickness. This finding is corroborated by our ab initio GW and Bethe-Salpeter equation calculations, which include electron correlations and quasiparticle self-consistency (QSGW). In addition, while we find the position of the sole h-BN Raman line to be invariant with nanosheet dimensions, the linewidth appears to vary weakly with nanosheet thickness. These size-dependent spectroscopic properties can be used as metrics to estimate nanosheet thickness from spectroscopic data.Comment: Accepted in Chemistry Materials (In press

    Follow-up observations at 16 and 33 GHz of extragalactic sources from WMAP 3-year data: I - Spectral properties

    Get PDF
    We present follow-up observations of 97 point sources from the Wilkinson Microwave Anisotropy Probe (WMAP) 3-year data, contained within the New Extragalactic WMAP Point Source (NEWPS) catalogue between declinations of -4 and +60 degrees; the sources form a flux-density-limited sample complete to 1.1 Jy (approximately 5 sigma) at 33 GHz. Our observations were made at 16 GHz using the Arcminute Microkelvin Imager (AMI) and at 33 GHz with the Very Small Array (VSA). 94 of the sources have reliable, simultaneous -- typically a few minutes apart -- observations with both telescopes. The spectra between 13.9 and 33.75 GHz are very different from those of bright sources at low frequency: 44 per cent have rising spectra (alpha < 0.0), where flux density is proportional to frequency^-alpha, and 93 per cent have spectra with alpha < 0.5; the median spectral index is 0.04. For the brighter sources, the agreement between VSA and WMAP 33-GHz flux densities averaged over sources is very good. However, for the fainter sources, the VSA tends to measure lower values for the flux densities than WMAP. We suggest that the main cause of this effect is Eddington bias arising from variability.Comment: 12 pages, 13 figures, submitted to MNRA

    The optically selected 1.4-GHz quasar luminosity function below 1 mJy

    Get PDF
    We present the radio luminosity function (RLF) of optically selected quasars below 1 mJy, constructed by applying a Bayesian-fitting stacking technique to objects well below the nominal radio flux density limit. We test the technique using simulated data, confirming that we can reconstruct the RLF over three orders of magnitude below the typical 5σ detection threshold. We apply our method to 1.4-GHz flux densities from the Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) survey, extracted at the positions of optical quasars from the Sloan Digital Sky Survey over seven redshift bins up to z = 2.15, and measure the RLF down to two orders of magnitude below the FIRST detection threshold. In the lowest redshift bin (0.2 < z < 0.45), we find that our measured RLF agrees well with deeper data from the literature. The RLF for the radio-loud quasars flattens below log10[L1.4/WHz−1]≈25.5 and becomes steeper again below log10[L1.4/WHz−1]≈24.8⁠, where radio-quiet quasars start to emerge. The radio luminosity where radio-quiet quasars emerge coincides with the luminosity where star-forming galaxies are expected to start dominating the radio source counts. This implies that there could be a significant contribution from star formation in the host galaxies, but additional data are required to investigate this further. The higher redshift bins show a similar behaviour to the lowest z bin, implying that the same physical process may be responsible
    corecore