916 research outputs found

    Gaussian processes, kinematic formulae and Poincar\'e's limit

    Full text link
    We consider vector valued, unit variance Gaussian processes defined over stratified manifolds and the geometry of their excursion sets. In particular, we develop an explicit formula for the expectation of all the Lipschitz--Killing curvatures of these sets. Whereas our motivation is primarily probabilistic, with statistical applications in the background, this formula has also an interpretation as a version of the classic kinematic fundamental formula of integral geometry. All of these aspects are developed in the paper. Particularly novel is the method of proof, which is based on a an approximation to the canonical Gaussian process on the nn-sphere. The n→∞n\to\infty limit, which gives the final result, is handled via recent extensions of the classic Poincar\'e limit theorem.Comment: Published in at http://dx.doi.org/10.1214/08-AOP439 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Distortion and Excluded Middles

    Get PDF
    Why is there so much distortion in ordinary, political, social, and ethical argument? Since we have a pervasive interest in reasoning well and corresponding abilities, the extent of distortion invites explanation. The leading candidates are the need to economize, widespread, fallacious heuristics or assumptions, and self-defensive biases. I argue that these are not sufficient. An additional force is the intellectual pressure generated by acceptance of norms of conversation and argument, which exclude ‘middles’ of, prominently, neither accept (believe) nor reject (disbelieve). I conjecture that the distortion we find is due to intellectual and normative pressures generated by our commitment to these excluded-middle norms and if, or when, their force is lessened, there is likely to be less distortion

    Rotation and scale space random fields and the Gaussian kinematic formula

    Full text link
    We provide a new approach, along with extensions, to results in two important papers of Worsley, Siegmund and coworkers closely tied to the statistical analysis of fMRI (functional magnetic resonance imaging) brain data. These papers studied approximations for the exceedence probabilities of scale and rotation space random fields, the latter playing an important role in the statistical analysis of fMRI data. The techniques used there came either from the Euler characteristic heuristic or via tube formulae, and to a large extent were carefully attuned to the specific examples of the paper. This paper treats the same problem, but via calculations based on the so-called Gaussian kinematic formula. This allows for extensions of the Worsley-Siegmund results to a wide class of non-Gaussian cases. In addition, it allows one to obtain results for rotation space random fields in any dimension via reasonably straightforward Riemannian geometric calculations. Previously only the two-dimensional case could be covered, and then only via computer algebra. By adopting this more structured approach to this particular problem, a solution path for other, related problems becomes clearer.Comment: Published in at http://dx.doi.org/10.1214/12-AOS1055 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Excursion sets of stable random fields

    Full text link
    Studying the geometry generated by Gaussian and Gaussian- related random fields via their excursion sets is now a well developed and well understood subject. The purely non-Gaussian scenario has, however, not been studied at all. In this paper we look at three classes of stable random fields, and obtain asymptotic formulae for the mean values of various geometric characteristics of their excursion sets over high levels. While the formulae are asymptotic, they contain enough information to show that not only do stable random fields exhibit geometric behaviour very different from that of Gaussian fields, but they also differ significantly among themselves.Comment: 35 pages, 1 figur

    High level excursion set geometry for non-Gaussian infinitely divisible random fields

    Full text link
    We consider smooth, infinitely divisible random fields (X(t),t∈M)(X(t),t\in M), M⊂RdM\subset {\mathbb{R}}^d, with regularly varying Levy measure, and are interested in the geometric characteristics of the excursion sets Au={t∈M:X(t)>u}A_u=\{t\in M:X(t)>u\} over high levels u. For a large class of such random fields, we compute the u→∞u\to\infty asymptotic joint distribution of the numbers of critical points, of various types, of X in AuA_u, conditional on AuA_u being nonempty. This allows us, for example, to obtain the asymptotic conditional distribution of the Euler characteristic of the excursion set. In a significant departure from the Gaussian situation, the high level excursion sets for these random fields can have quite a complicated geometry. Whereas in the Gaussian case nonempty excursion sets are, with high probability, roughly ellipsoidal, in the more general infinitely divisible setting almost any shape is possible.Comment: Published in at http://dx.doi.org/10.1214/11-AOP738 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Jointly reconstructing ground motion and resistivity for ERT-based slope stability monitoring

    Get PDF
    Electrical resistivity tomography (ERT) is increasingly being used to investigate unstable slopes and monitor the hydrogeological processes within. But movement of electrodes or incorrect placement of electrodes with respect to an assumed model can introduce significant resistivity artefacts into the reconstruction. In this work, we demonstrate a joint resistivity and electrode movement reconstruction algorithm within an iterative Gauss–Newton framework. We apply this to ERT monitoring data from an active slow-moving landslide in the UK. Results show fewer resistivity artefacts and suggest that electrode movement and resistivity can be reconstructed at the same time under certain conditions. A new 2.5-D formulation for the electrode position Jacobian is developed and is shown to give accurate numerical solutions when compared to the adjoint method on 3-D models. On large finite element meshes, the calculation time of the newly developed approach was also proven to be orders of magnitude faster than the 3-D adjoint method and addressed modelling errors in the 2-D perturbation and adjoint electrode position Jacobian

    A Framework for Generalising the Newton Method and Other Iterative Methods from Euclidean Space to Manifolds

    Full text link
    The Newton iteration is a popular method for minimising a cost function on Euclidean space. Various generalisations to cost functions defined on manifolds appear in the literature. In each case, the convergence rate of the generalised Newton iteration needed establishing from first principles. The present paper presents a framework for generalising iterative methods from Euclidean space to manifolds that ensures local convergence rates are preserved. It applies to any (memoryless) iterative method computing a coordinate independent property of a function (such as a zero or a local minimum). All possible Newton methods on manifolds are believed to come under this framework. Changes of coordinates, and not any Riemannian structure, are shown to play a natural role in lifting the Newton method to a manifold. The framework also gives new insight into the design of Newton methods in general.Comment: 36 page
    • …
    corecore