We provide a new approach, along with extensions, to results in two important
papers of Worsley, Siegmund and coworkers closely tied to the statistical
analysis of fMRI (functional magnetic resonance imaging) brain data. These
papers studied approximations for the exceedence probabilities of scale and
rotation space random fields, the latter playing an important role in the
statistical analysis of fMRI data. The techniques used there came either from
the Euler characteristic heuristic or via tube formulae, and to a large extent
were carefully attuned to the specific examples of the paper. This paper treats
the same problem, but via calculations based on the so-called Gaussian
kinematic formula. This allows for extensions of the Worsley-Siegmund results
to a wide class of non-Gaussian cases. In addition, it allows one to obtain
results for rotation space random fields in any dimension via reasonably
straightforward Riemannian geometric calculations. Previously only the
two-dimensional case could be covered, and then only via computer algebra. By
adopting this more structured approach to this particular problem, a solution
path for other, related problems becomes clearer.Comment: Published in at http://dx.doi.org/10.1214/12-AOS1055 the Annals of
Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical
Statistics (http://www.imstat.org