660 research outputs found

    Robust segregation of donor and recipient cells from single-cell RNA-sequencing of transplant samples

    Get PDF
    BackgroundSingle-cell RNA-sequencing (scRNA-seq) technology has revealed novel cell populations in organs, uncovered regulatory relationships between genes, and allowed for tracking of cell lineage trajectory during development. It demonstrates promise as a method to better understand transplant biology; however, fundamental bioinformatic tools for its use in the context of transplantation have not been developed. One major need has been a robust method to identify cells as being either donor or recipient genotype origin, and ideally without the need to separately sequence the donor and recipient.MethodsWe implemented a novel two-stage genotype discovery method (scTx) optimized for transplant samples by being robust to disparities in cell number and cell type. Using both in silico and real-world scRNA-seq transplant data, we benchmarked our method against existing demultiplexing methods to profile their limitations in terms of sequencing depth, donor and recipient cell imbalance, and single nucleotide variant input selection.ResultsUsing in silico data, scTx could more accurately separate donor from recipient cells and at much lower genotype ratios than existing methods. This was further validated using solid-organ scRNA-seq data where scTx could more reliably identify when a second genotype was present and at lower numbers of cells from a second genotype.ConclusionscTx introduces the capability to accurately segregate donor and recipient gene expression at the single-cell level from scRNA-seq data without the need to separately genotype the donor and recipient. This will facilitate the use of scRNA-seq in the context of transplantation

    Reliability and validity of cutaneous sarcoidosis outcome instruments among dermatologists, pulmonologists, and rheumatologists

    Get PDF
    IMPORTANCE: Dermatologists, pulmonologists, and rheumatologists study and treat patients with sarcoidosis with cutaneous manifestations. The validity of cutaneous sarcoidosis outcome instruments for use across medical specialties remains unknown. OBJECTIVE: To assess the reliability and validity of cutaneous sarcoidosis outcome instruments for use by dermatologists and nondermatologists treating sarcoidosis. DESIGN, SETTING, AND PARTICIPANTS: We performed a cross-sectional study evaluating the use of the Cutaneous Sarcoidosis Activity and Morphology Instrument (CSAMI) and Sarcoidosis Activity and Severity Index (SASI) to assess cutaneous sarcoidosis disease severity and the Physician's Global Assessment (PGA) as a reference instrument. Four dermatologists, 3 pulmonologists, and 4 rheumatologists evaluated facial cutaneous sarcoidosis in 13 patients treated at a cutaneous sarcoidosis clinic in a 1-day study on October 24, 2014; data analysis was performed from November through December 2014. MAIN OUTCOMES AND MEASURES: Interrater and intrarater reliability and convergent validity, with correlation with quality-of-life measures as the secondary outcome. RESULTS: All instruments demonstrated excellent intrarater reliability. Interrater reliability (reported as intraclass correlation coefficient [95% CI]) was good for the CSAMI Activity scale (0.69 [0.51-0.87]) and PGA (0.66 [0.47-0.85]), weak for the CSAMI Damage scale (0.26 [0.11-0.52]), and excellent for the modified Facial SASI (0.78 [0.63-0.91]). The CSAMI Activity scale and modified Facial SASI showed moderate correlations (95% CI) with the PGA (0.67 [0.57-0.75] and 0.57 [0.45-0.66], respectively). The CSAMI Activity scale but not the modified Facial SASI showed significant correlations (95% CI) with quality-of-life instruments, such as the Dermatology Life Quality Index (Spearman rank correlation, 0.70 [0.25-0.90]) and the Skin Stigma raw score of the Sarcoidosis Assessment Tool (Pearson product moment correlation, 0.56 [0.01-0.85]). CONCLUSIONS AND RELEVANCE: The CSAMI and SASI were reliable and valid in assessing cutaneous sarcoidosis among our diverse group of specialists. The CSAMI Activity score also correlated with quality-of-life measures and suggested construct validity. These results lend credibility to expand the use of the CSAMI and SASI by dermatologists and nondermatologists in assessing cutaneous sarcoidosis disease activity

    Neuroimaging young children and associations with neurocognitive development in a South African birth cohort study.

    Get PDF
    Magnetic resonance imaging (MRI) is an indispensable tool for investigating brain development in young children and the neurobiological mechanisms underlying developmental risk and resilience. Sub-Saharan Africa has the highest proportion of children at risk of developmental delay worldwide, yet in this region there is very limited neuroimaging research focusing on the neurobiology of such impairment. Furthermore, paediatric MRI imaging is challenging in any setting due to motion sensitivity. Although sedation and anesthesia are routinely used in clinical practice to minimise movement in young children, this may not be ethical in the context of research. Our study aimed to investigate the feasibility of paediatric multimodal MRI at age 2-3 years without sedation, and to explore the relationship between cortical structure and neurocognitive development at this understudied age in a sub-Saharan African setting. A total of 239 children from the Drakenstein Child Health Study, a large observational South African birth cohort, were recruited for neuroimaging at 2-3 years of age. Scans were conducted during natural sleep utilising locally developed techniques. T1-MEMPRAGE and T2-weighted structural imaging, resting state functional MRI, diffusion tensor imaging and magnetic resonance spectroscopy sequences were included. Child neurodevelopment was assessed using the Bayley-III Scales of Infant and Toddler Development. Following 23 pilot scans, 216 children underwent scanning and T1-weighted images were obtained from 167/216 (77%) of children (median age 34.8 months). Furthermore, we found cortical surface area and thickness within frontal regions were associated with cognitive development, and in temporal and frontal regions with language development (beta coefficient ?0.20). Overall, we demonstrate the feasibility of carrying out a neuroimaging study of young children during natural sleep in sub-Saharan Africa. Our findings indicate that dynamic morphological changes in heteromodal association regions are associated with cognitive and language development at this young age. These proof-of-concept analyses suggest similar links between the brain and cognition as prior literature from high income countries, enhancing understanding of the interplay between cortical structure and function during brain maturation

    No-go trials can modulate switch cost by interfering with effects of task preparation

    Get PDF
    It has recently been shown that the cost associated with switching tasks is eliminated following ‘no-go’ trials, in which response selection is not completed, suggesting that the switch cost depends on response selection. However, no-go trials may also affect switch costs by interfering with the effects of task preparation that precede response selection. To test this hypothesis we evaluated switch costs following standard go trials with those following two types of non-response trials: no-go trials, for which a stimulus is presented that indicates no response should be made (Experiment 1); and cue-only trials in which no stimulus is presented following the task cue (Experiment 2). We hypothesized that eliminating no-go stimuli would reveal effects of task preparation on the switch cost in cue-only trials. We found no switch cost following no-go trials (Experiment 1), but a reliable switch cost in cue-only trials (i.e., when no-go stimuli were removed; Experiment 2). We conclude that no-go trials can modulate the switch cost, independent of their effect on response selection, by interfering with task preparation, and that the effects of task preparation on switch cost are more directly assessed by cue-only trials

    Prediction of backbone dihedral angles and protein secondary structure using support vector machines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prediction of the secondary structure of a protein is a critical step in the prediction of its tertiary structure and, potentially, its function. Moreover, the backbone dihedral angles, highly correlated with secondary structures, provide crucial information about the local three-dimensional structure.</p> <p>Results</p> <p>We predict independently both the secondary structure and the backbone dihedral angles and combine the results in a loop to enhance each prediction reciprocally. Support vector machines, a state-of-the-art supervised classification technique, achieve secondary structure predictive accuracy of 80% on a non-redundant set of 513 proteins, significantly higher than other methods on the same dataset. The dihedral angle space is divided into a number of regions using two unsupervised clustering techniques in order to predict the region in which a new residue belongs. The performance of our method is comparable to, and in some cases more accurate than, other multi-class dihedral prediction methods.</p> <p>Conclusions</p> <p>We have created an accurate predictor of backbone dihedral angles and secondary structure. Our method, called DISSPred, is available online at <url>http://comp.chem.nottingham.ac.uk/disspred/</url>.</p

    The Function and Organization of Lateral Prefrontal Cortex: A Test of Competing Hypotheses

    Get PDF
    The present experiment tested three hypotheses regarding the function and organization of lateral prefrontal cortex (PFC). The first account (the information cascade hypothesis) suggests that the anterior-posterior organization of lateral PFC is based on the timing with which cue stimuli reduce uncertainty in the action selection process. The second account (the levels-of-abstraction hypothesis) suggests that the anterior-posterior organization of lateral PFC is based on the degree of abstraction of the task goals. The current study began by investigating these two hypotheses, and identified several areas of lateral PFC that were predicted to be active by both the information cascade and levels-of-abstraction accounts. However, the pattern of activation across experimental conditions was inconsistent with both theoretical accounts. Specifically, an anterior area of mid-dorsolateral PFC exhibited sensitivity to experimental conditions that, according to both accounts, should have selectively engaged only posterior areas of PFC. We therefore investigated a third possible account (the adaptive context maintenance hypothesis) that postulates that both posterior and anterior regions of PFC are reliably engaged in task conditions requiring active maintenance of contextual information, with the temporal dynamics of activity in these regions flexibly tracking the duration of maintenance demands. Activity patterns in lateral PFC were consistent with this third hypothesis: regions across lateral PFC exhibited transient activation when contextual information had to be updated and maintained in a trial-by-trial manner, but sustained activation when contextual information had to be maintained over a series of trials. These findings prompt a reconceptualization of current views regarding the anterior-posterior organization of lateral PFC, but do support other findings regarding the active maintenance role of lateral PFC in sequential working memory paradigms
    corecore