10 research outputs found
A set of monomeric near-infrared fluorescent proteins for multicolor imaging across scales
Bright monomeric near-infrared (NIR) fluorescent proteins (FPs) are in high demand as protein tags for multicolor microscopy and in vivo imaging. Here we apply rational design to engineer a complete set of monomeric NIR FPs, which are the brightest genetically encoded NIR probes. We demonstrate that the enhanced miRFP series of NIR FPs, which combine high effective brightness in mammalian cells and monomeric state, perform well in both nanometer-scale imaging with diffraction unlimited stimulated emission depletion (STED) microscopy and centimeter-scale imaging in mice. In STED we achieve -40nm resolution in live cells. In living mice we detect -10(5) fluorescent cells in deep tissues. Using spectrally distinct monomeric NIR FP variants, we perform two-color live-cell STED microscopy and two-color imaging in vivo. Having emission peaks from 670nm to 720nm, the next generation of miRFPs should become versatile NIR probes for multiplexed imaging across spatial scales in different modalities.Peer reviewe
r-Process Simulation and Heavy-Element Nucleosynthesis.
r-process, short for rapid neutron capture process, is a nucleosynthesis process taking place on short time scales. Rapid neutron captures produce less and less stable neutron-rich nuclei which in turn beta minus decays when the probability for beta decay is higher than the probability for neutron captures, upon which more neutrons are captured and the process repeats itself, creating r-process paths. Very neutron-rich heavy elements are the product of this process taking place at explosive astrophysical sites with high neutron flux. Simulations of r-processes are important for finding out the exact sites, something that is yet not known. To get more accurate simulation results leading to a better understanding of r-processes, the initial parameter dependence of the simulations is important to understand. This report discusses the dependence on three important initial parameters; temperature, density and electron fraction. Furthermore, the dependence on nuclear masses is covered, which is important since no exact model for nuclear masses exists for the neutron-rich nuclei involved. Finally, different stopping criteria are simulated, representing different physical environments in which r-processes may occur. Results from the simulations, carried out using r-Java 2.0, show that r-process simulations are sensitive to all parameters discussed; further research can tell to which extent. A better understanding of the dependence on the parameters will hopefully extend our knowledge of r-processes and where in the universe they occur.r-process, rapid neutron capture process, Àr en snabb nukleosyntesprocess. Snabba neutroninfÄngningar producerar allt mer instabila neutronrika atomkÀrnor som slutligen betaminussönderfaller nÀr sannolikheten för betasönderfall blir högre Àn sannolikheten för en ny neutroninfÄngning. DÀrefeter fÄngas fler neutroner och processen upprepar sig sjÀlv i r-processkedjor. VÀldigt neutronrika tunga Àmnen bildas under denna process som krÀver explosiva astrofysikaliska platser med höga neutronflux. DÄ det Ànnu Àr okÀnt exakt var dessa platser Àr sÄ hjÀlper r-processsimulationer att förstÄ detta. För att förbÀttra simuleringsresultaten och dÀrmed förstÄelsen av r-processer sÄ Àr det viktigt att förstÄ hur initiala parametrar pÄverkar simuleringarna. Temperatur, densitet och förhÄllandet mellan fria elektroner och nukleoner Àr tre parametrar som denna rapport behandlar. PÄverkan av kÀrrnmassor diskuteras ocksÄ, vilket Àr viktigt dÄ ingen exakt modell för kÀrnmassor existerar. Slutligen behandlas Àven olika stoppkriterium vilket representerar olika fysikaliska miljöer dÀr r-processer eventuellt förekommer. Resultat frÄn simuleringar, gjorda i r-Java 2.0, visar pÄ att r-processimuleringar Àr kÀnsliga för alla parametrar som har behandlats men dÀr vidare forskning fÄr visa till vilken grad. En bÀttre förstÄelse för hur simuleringarna pÄverkas av parametrar kommer förhoppningsvis öka förstÄelsen för r-processer och var i universum de förekommer
Automating STED microscopy for functional and structural live-cell imaging
Optical microscopy imaging methods are today invaluable tools for studies in life sciences as they allow visualization of biological systems, tissues, cells, and sub-cellular compartments from millimetres down to nanometres. The invention and development of nanoscopy in the past 20 years has pushed fluorescence microscopy down to the nanoscale, reaching beyond the natural diffraction limit of light that does not allow focusing of visible light below sizes of around 200 nm, and into the realm of what was previously only thought possible with electron microscopy. The superior spatial resolution does however come at a price, including complex sample preparation, prolonged recording times, increased illumination doses, and limited fields of view. Stimulated emission depletion (STED) microscopy is one of the techniques that can deliver nanoscale resolution in a range of biological systems, but with all the above-mentioned costs. However, with the right sample the technique can deliver single nanometre spatial resolution, and with the right considerations live-cell imaging is more than possible. In this thesis I present the development of a flexible STED microscope with methodological advancements in a range of directions that aim at facilitating the use of STED microscopy in life sciences and optimising the information extraction from the image data. The developments firstly focused on automation of the data acquisition, to allow the recording of imaging data both with a higher throughput and correlated with fast dynamic processes. I also implemented improved image analysis, both in terms of high throughput and precision as well as in connection with the data acquisition. Furthermore, I worked on control software development, with novel strategies to unify the control software of microscopes and to allow development and implementation of novel acquisition schemes. I also utilized novel fluorophores, to improve live-cell and multicolour possibilities and allow a wider range of applications in STED microscopy. Lastly, I developed a novel concept that takes advantage of STED. Additionally, I present applications of the microscope and image analysis in diverse biological samples such as mammalian cells, tissue sections, and bacteria. Altogether, this work aims at presenting new tools for an imaging technique that is already well-established, to contribute to further development, facilitation of novel experiments, and expansion of the range of applications.Ljusmikroskopi Àr idag ovÀrdeligt för forskare inom livsvetenskap för att visualisera och studera biologiska system, vÀvnader, celler, och bestÄndsdelar av celler pÄ lÀngdskalor frÄn millimeter ner till nanometer. Uppfinnandet av nanoskopi och dess utveckling de senaste decennenierna har möjliggjort för fluorescensmikroskopi att nÄ den undre grÀnsen som tidigare var inom rÀckhÄll endast med elektonmikroskopi. Anledningen till detta Àr diffraktionsgrÀnsen som dikterar hur vÀl man kan fokusera elektromagnetisk strÄlning, och som i praktiken inte tillÄter fokusering av synligt ljus till omrÄden mindre Àn 200 nm i diameter. Nanoskopins överlÀgsna upplösning kommer dÀremot inte gratis, utan komplicerad förberedning av prover, förlÀngda inspelningstider, högre belysningsintensiteter, och begrÀnsade synfÀlt Àr nÄgra av de extra svÄrigheter som man mÄste ta hÀnsyn till. Stimulated emission depletion (STED) mikroskopi Àr en av dessa metoder som kan avbilda prover frÄn biologiska system med nanometerupplösning, men med alla svÄrigheter som nÀmnts ovan. Men med rÀtt prov sÄ kan metoden leverera en upplösning under 10 nm, och med rÀtt hÀnsyn tagen till cellöverlevnad sÄ kan levande celler avbildas. I denna avhandling presenterar jag utvecklingen av ett STED-mikroskop med en rad tekniska framsteg som fokuserar pÄ att underlÀtta anvÀndningen av STED-mikroskopi i livsvetenskap och optimera utvinningen av information frÄn bilderna. Utvecklingen har fokuserat pÄ automatisering, med möjligheten att samla in bilddata med bÄde högre genomströmning och i samband med snabba processer i de biologiska systemen, men ocksÄ förbÀttrad bildanalys bÄde i form av högre genomströmning och precision samt i samband med datainsamlingen. Jag har ocksÄ utvecklat kontrollmjukvara med nya strategier för att tillÄta fortsatt utveckling och implementering av nya datainsamlingssÀtt för liknande mikroskop. Dessutom har jag utnyttjat nya fluorescenta molekyler för att förbÀttra möjligheten att anvÀnda tekniken i levande celler och med fler inspelningskanaler samt tillÄta fler tillÀmpningssomrÄden. Slutligen har jag utvecklat ett nytt koncept som tar hjÀlp av STED, och tillÀmpat mikroskopet och bildanalys pÄ diverse biologiska system sÄsom dÀggdjursceller, vÀvnader och bakterier. Sammantaget siktar mitt arbete pÄ att presentera nya verktyg för en redan etablerad mikroskopiteknik, för att bidra till fortsatt utveckling, underlÀtta nya typer av experiment och utöka bredden av tillÀmpningsomrÄden.
Automating STED microscopy for functional and structural live-cell imaging
Optical microscopy imaging methods are today invaluable tools for studies in life sciences as they allow visualization of biological systems, tissues, cells, and sub-cellular compartments from millimetres down to nanometres. The invention and development of nanoscopy in the past 20 years has pushed fluorescence microscopy down to the nanoscale, reaching beyond the natural diffraction limit of light that does not allow focusing of visible light below sizes of around 200 nm, and into the realm of what was previously only thought possible with electron microscopy. The superior spatial resolution does however come at a price, including complex sample preparation, prolonged recording times, increased illumination doses, and limited fields of view. Stimulated emission depletion (STED) microscopy is one of the techniques that can deliver nanoscale resolution in a range of biological systems, but with all the above-mentioned costs. However, with the right sample the technique can deliver single nanometre spatial resolution, and with the right considerations live-cell imaging is more than possible. In this thesis I present the development of a flexible STED microscope with methodological advancements in a range of directions that aim at facilitating the use of STED microscopy in life sciences and optimising the information extraction from the image data. The developments firstly focused on automation of the data acquisition, to allow the recording of imaging data both with a higher throughput and correlated with fast dynamic processes. I also implemented improved image analysis, both in terms of high throughput and precision as well as in connection with the data acquisition. Furthermore, I worked on control software development, with novel strategies to unify the control software of microscopes and to allow development and implementation of novel acquisition schemes. I also utilized novel fluorophores, to improve live-cell and multicolour possibilities and allow a wider range of applications in STED microscopy. Lastly, I developed a novel concept that takes advantage of STED. Additionally, I present applications of the microscope and image analysis in diverse biological samples such as mammalian cells, tissue sections, and bacteria. Altogether, this work aims at presenting new tools for an imaging technique that is already well-established, to contribute to further development, facilitation of novel experiments, and expansion of the range of applications.Ljusmikroskopi Àr idag ovÀrdeligt för forskare inom livsvetenskap för att visualisera och studera biologiska system, vÀvnader, celler, och bestÄndsdelar av celler pÄ lÀngdskalor frÄn millimeter ner till nanometer. Uppfinnandet av nanoskopi och dess utveckling de senaste decennenierna har möjliggjort för fluorescensmikroskopi att nÄ den undre grÀnsen som tidigare var inom rÀckhÄll endast med elektonmikroskopi. Anledningen till detta Àr diffraktionsgrÀnsen som dikterar hur vÀl man kan fokusera elektromagnetisk strÄlning, och som i praktiken inte tillÄter fokusering av synligt ljus till omrÄden mindre Àn 200 nm i diameter. Nanoskopins överlÀgsna upplösning kommer dÀremot inte gratis, utan komplicerad förberedning av prover, förlÀngda inspelningstider, högre belysningsintensiteter, och begrÀnsade synfÀlt Àr nÄgra av de extra svÄrigheter som man mÄste ta hÀnsyn till. Stimulated emission depletion (STED) mikroskopi Àr en av dessa metoder som kan avbilda prover frÄn biologiska system med nanometerupplösning, men med alla svÄrigheter som nÀmnts ovan. Men med rÀtt prov sÄ kan metoden leverera en upplösning under 10 nm, och med rÀtt hÀnsyn tagen till cellöverlevnad sÄ kan levande celler avbildas. I denna avhandling presenterar jag utvecklingen av ett STED-mikroskop med en rad tekniska framsteg som fokuserar pÄ att underlÀtta anvÀndningen av STED-mikroskopi i livsvetenskap och optimera utvinningen av information frÄn bilderna. Utvecklingen har fokuserat pÄ automatisering, med möjligheten att samla in bilddata med bÄde högre genomströmning och i samband med snabba processer i de biologiska systemen, men ocksÄ förbÀttrad bildanalys bÄde i form av högre genomströmning och precision samt i samband med datainsamlingen. Jag har ocksÄ utvecklat kontrollmjukvara med nya strategier för att tillÄta fortsatt utveckling och implementering av nya datainsamlingssÀtt för liknande mikroskop. Dessutom har jag utnyttjat nya fluorescenta molekyler för att förbÀttra möjligheten att anvÀnda tekniken i levande celler och med fler inspelningskanaler samt tillÄta fler tillÀmpningssomrÄden. Slutligen har jag utvecklat ett nytt koncept som tar hjÀlp av STED, och tillÀmpat mikroskopet och bildanalys pÄ diverse biologiska system sÄsom dÀggdjursceller, vÀvnader och bakterier. Sammantaget siktar mitt arbete pÄ att presentera nya verktyg för en redan etablerad mikroskopiteknik, för att bidra till fortsatt utveckling, underlÀtta nya typer av experiment och utöka bredden av tillÀmpningsomrÄden.
Far RedâShifted CdTe Quantum Dots for Multicolour Stimulated Emission Depletion Nanoscopy
Stimulated emission depletion (STED) nanoscopy is a widely used nanoscopy technique. Two-colour STED imaging in fixed and living cells is standardised today utilising both fluorescent dyes and fluorescent proteins. Solutions to image additional colours have been demonstrated using spectral unmixing, photobleaching steps, or long-Stokes-shift dyes. However, these approaches often compromise speed, spatial resolution, and image quality, and increase complexity. Here, we present multicolour STED nanoscopy with far red-shifted semiconductor CdTe quantum dots (QDs). STED imaging of the QDs is optimized to minimize blinking effects and maximize the number of detected photons. The far-red and compact emission spectra of the investigated QDs free spectral space for the simultaneous use of fluorescent dyes, enabling straightforward three-colour STED imaging with a single depletion beam. We use our method to study the internalization of QDs in cells, opening up the way for future super-resolution studies of particle uptake and internalization.QC 20230607</p
Extending fluorescence anisotropy to large complexes using reversibly switchable proteins
The formation of macromolecular complexes can be measured by detection of changes in rotational mobility using time-resolved fluorescence anisotropy. However, this method is limited to relatively small molecules (~0.1â30âkDa), excluding the majority of the human proteome and its complexes. We describe selective time-resolved anisotropy with reversibly switchable states (STARSS), which overcomes this limitation and extends the observable mass range by more than three orders of magnitude. STARSS is based on long-lived reversible molecular transitions of switchable fluorescent proteins to resolve the relatively slow rotational diffusivity of large complexes. We used STARSS to probe the rotational mobility of several molecular complexes in cells, including chromatin, the retroviral Gag lattice and activity-regulated cytoskeleton-associated protein oligomers. Because STARSS can probe arbitrarily large structures, it is generally applicable to the entire human proteome.QC 20230602</p
Blue-shift photoconversion of near-infrared fluorescent proteins for labeling and tracking in living cells and organisms
Photolabeling of intracellular molecules is an invaluable approach to studying various dynamic processes in living cells with high spatiotemporal precision. Among fluorescent proteins, photoconvertible mechanisms and their products are in the visible spectrum (400â650 nm), limiting their in vivo and multiplexed applications. Here we report the phenomenon of near-infrared to far-red photoconversion in the miRFP family of near infrared fluorescent proteins engineered from bacterial phytochromes. This photoconversion is induced by near-infrared light through a non-linear process, further allowing optical sectioning. Photoconverted miRFP species emit fluorescence at 650 nm enabling photolabeling entirely performed in the near-infrared range. We use miRFPs as photoconvertible fluorescent probes to track organelles in live cells and in vivo, both with conventional and super-resolution microscopy. The spectral properties of miRFPs complement those of GFP-like photoconvertible proteins, allowing strategies for photoconversion and spectral multiplexed applications.Peer reviewe
Blue-shift photoconversion of near-infrared fluorescent proteins for labeling and tracking in living cells and organisms
Abstract Photolabeling of intracellular molecules is an invaluable approach to studying various dynamic processes in living cells with high spatiotemporal precision. Among fluorescent proteins, photoconvertible mechanisms and their products are in the visible spectrum (400â650ânm), limiting their in vivo and multiplexed applications. Here we report the phenomenon of near-infrared to far-red photoconversion in the miRFP family of near infrared fluorescent proteins engineered from bacterial phytochromes. This photoconversion is induced by near-infrared light through a non-linear process, further allowing optical sectioning. Photoconverted miRFP species emit fluorescence at 650ânm enabling photolabeling entirely performed in the near-infrared range. We use miRFPs as photoconvertible fluorescent probes to track organelles in live cells and in vivo, both with conventional and super-resolution microscopy. The spectral properties of miRFPs complement those of GFP-like photoconvertible proteins, allowing strategies for photoconversion and spectral multiplexed applications