11 research outputs found

    The global burden of cancer attributable to risk factors, 2010–19: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    BACKGROUND: Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. METHODS: The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk–outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. FINDINGS: Globally, in 2019, the risk factors included in this analysis accounted for 4·45 million (95% uncertainty interval 4·01–4·94) deaths and 105 million (95·0–116) DALYs for both sexes combined, representing 44·4% (41·3–48·4) of all cancer deaths and 42·0% (39·1–45·6) of all DALYs. There were 2·88 million (2·60–3·18) risk-attributable cancer deaths in males (50·6% [47·8–54·1] of all male cancer deaths) and 1·58 million (1·36–1·84) risk-attributable cancer deaths in females (36·3% [32·5–41·3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20·4% (12·6–28·4) and DALYs by 16·8% (8·8–25·0), with the greatest percentage increase in metabolic risks (34·7% [27·9–42·8] and 33·3% [25·8–42·0]). INTERPRETATION: The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden

    Morphological and genetic divergence of intralacustrine stickleback morphs in Iceland: a case for selective differentiation?

    No full text
    The evolutionary processes involved in population divergence and local adaptation are poorly understood. Theory predicts that divergence of adjacent populations is possible but depends on several factors including gene flow, divergent selection, population size and the number of genes involved in divergence and their distribution on the genome. We analyse variation in neutral markers, markers linked to putative quantitative trait loci and morphological traits in a recent (&lt; 10 000 years) zone of primary divergence between stickleback morphs in Lake Thingvallavatn, Iceland. Environmental factors, especially predation, are clearly implicated in reducing gene flow between morphs. There is continuous morphological and genetic variation between habitats with a zone centre similar to secondary contact zones. Individual microsatellite loci are implicated as being linked to adaptive variation by direct tests as well as by differences in cline shape. Patterns of linkage disequilibria indicate that the morphs have diverged at several loci. This divergence shows parallels and differences with the well-studied limnetic-benthic stickleback morphs, both in phenotypic divergence and at the genomic level.</p

    Association of BRCA2 K3326* With Small Cell Lung Cancer and Squamous Cell Cancer of the Skin

    No full text
    Contains fulltext : 195644.pdf (publisher's version ) (Closed access)Background: Most pathogenic mutations in the BRCA2 gene carry a high risk of hereditary breast and ovarian cancer (HBOC). However, a stop-gain mutation, K3326* (rs11571833), confers risk of lung cancer and cancers of the upper-aero-digestive tract but only a modest risk of breast or ovarian cancer. The Icelandic population provides an opportunity for comprehensive characterization of the cancer risk profiles of K3326* and HBOC mutations because a single mutation, BRCA2 999del5, is responsible for almost all BRCA2-related HBOC in the population. Methods: Genotype information on 43 641 cancer patients and 370 971 control subjects from Iceland, the Netherlands, and the United States was used to assess the cancer risk profiles of K3326* and BRCA2 999del5. BRCA2 expression was assessed using RNAseq data from blood (n = 2233), as well as 52 tissues reported in the GTEx database. Results: The cancer risks associated with K3326* are fundamentally different from those associated with 999del5. We report for the first time an association between K3326* and small cell lung cancer (odds ratio [OR] = 2.06, 95% confidence interval [CI] = 1.35 to 3.16) and squamous cell carcinoma of the skin (OR = 1.69, 95% CI = 1.26 to 2.26). Individuals homozygous for K3326* reach old age and have children. Unlike BRCA2 999del5, the K3326* allele does not affect the level of BRCA2 transcripts, and the allele is expressed to the same extent as the wild-type allele. Conclusions: K3326* associates primarily with cancers that have strong environmental genotoxic risk factors. Expression of the K3326* allele suggests that a variant protein may be made that retains the DNA repair capabilities important to hormone-responsive tissues but may be less efficient in responding to genotoxic stress

    Cancer Incidence, Mortality, Years of Life Lost, Years Lived with Disability, and Disability-Adjusted Life Years for 29 Cancer Groups from 2010 to 2019: A Systematic Analysis for the Global Burden of Disease Study 2019

    No full text
    Importance: The Global Burden of Diseases, Injuries, and Risk Factors Study 2019 (GBD 2019) provided systematic estimates of incidence, morbidity, and mortality to inform local and international efforts toward reducing cancer burden. Objective: To estimate cancer burden and trends globally for 204 countries and territories and by Sociodemographic Index (SDI) quintiles from 2010 to 2019. Evidence Review: The GBD 2019 estimation methods were used to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life years (DALYs) in 2019 and over the past decade. Estimates are also provided by quintiles of the SDI, a composite measure of educational attainment, income per capita, and total fertility rate for those younger than 25 years. Estimates include 95 uncertainty intervals (UIs). Findings: In 2019, there were an estimated 23.6 million (95 UI, 22.2-24.9 million) new cancer cases (17.2 million when excluding nonmelanoma skin cancer) and 10.0 million (95 UI, 9.36-10.6 million) cancer deaths globally, with an estimated 250 million (235-264 million) DALYs due to cancer. Since 2010, these represented a 26.3 (95 UI, 20.3-32.3) increase in new cases, a 20.9 (95 UI, 14.2-27.6) increase in deaths, and a 16.0 (95 UI, 9.3-22.8) increase in DALYs. Among 22 groups of diseases and injuries in the GBD 2019 study, cancer was second only to cardiovascular diseases for the number of deaths, years of life lost, and DALYs globally in 2019. Cancer burden differed across SDI quintiles. The proportion of years lived with disability that contributed to DALYs increased with SDI, ranging from 1.4 (1.1-1.8) in the low SDI quintile to 5.7 (4.2-7.1) in the high SDI quintile. While the high SDI quintile had the highest number of new cases in 2019, the middle SDI quintile had the highest number of cancer deaths and DALYs. From 2010 to 2019, the largest percentage increase in the numbers of cases and deaths occurred in the low and low-middle SDI quintiles. Conclusions and Relevance: The results of this systematic analysis suggest that the global burden of cancer is substantial and growing, with burden differing by SDI. These results provide comprehensive and comparable estimates that can potentially inform efforts toward equitable cancer control around the world.. © 2021 American Medical Association. All rights reserved

    Pan-cancer analysis of whole genomes

    No full text
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation; analyses timings and patterns of tumour evolution; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity; and evaluates a range of more-specialized features of cancer genomes
    corecore