116 research outputs found

    Multi-directional sorting modes in deterministic lateral displacement devices

    Get PDF
    Deterministic lateral displacement (DLD) devices separate micrometer-scale particles in solution based on their size using a laminar microfluidic flow in an array of obstacles. We investigate array geometries with rational row-shift fractions in DLD devices by use of a simple model including both advection and diffusion. Our model predicts novel multi-directional sorting modes that could be experimentally tested in high-throughput DLD devices containing obstacles that are much smaller than the separation between obstacles

    Microfluidics-based approaches to the isolation of African trypanosomes

    Get PDF
    African trypanosomes are responsible for significant levels of disease in both humans and animals. The protozoan parasites are free-living flagellates, usually transmitted by arthropod vectors, including the tsetse fly. In the mammalian host they live in the bloodstream and, in the case of human-infectious species, later invade the central nervous system. Diagnosis of the disease requires the positive identification of parasites in the bloodstream. This can be particularly challenging where parasite numbers are low, as is often the case in peripheral blood. Enriching parasites from body fluids is an important part of the diagnostic pathway. As more is learned about the physicochemical properties of trypanosomes, this information can be exploited through use of different microfluidic-based approaches to isolate the parasites from blood or other fluids. Here, we discuss recent advances in the use of microfluidics to separate trypanosomes from blood and to isolate single trypanosomes for analyses including drug screening

    Lipid-Based Passivation in Nanofluidics

    Get PDF
    Stretching DNA in nanochannels is a useful tool for direct, visual studies of genomic DNA at the single molecule level. To facilitate the study of the interaction of linear DNA with proteins in nanochannels, we have implemented a highly effective passivation scheme based on lipid bilayers. We demonstrate virtually complete long-term passivation of nanochannel surfaces to a range of relevant reagents, including streptavidin-coated quantum dots, RecA proteins, and RecA-DNA complexes. We show that the performance of the lipid bilayer is significantly better than that of standard bovine serum albumin-based passivation. Finally, we show how the passivated devices allow us to monitor single DNA cleavage events during enzymatic degradation by DNase I. We expect that our approach will open up for detailed, systematic studies of a wide range of protein-DNA interactions with high spatial and temporal resolution

    Deterministic Lateral Displacement:Challenges and Perspectives

    Get PDF
    The advent of microfluidics in the 1990s promised a revolution in multiple industries from healthcare to chemical processing. Deterministic lateral displacement (DLD) is a continuous-flow microfluidic particle separation method discovered in 2004 that has been applied successfully and widely to the separation of blood cells, yeast, spores, bacteria, viruses, DNA, droplets, and more. Deterministic lateral displacement is conceptually simple and can deliver consistent performance over a wide range of flow rates and particle concentrations. Despite wide use and in-depth study, DLD has not yet been fully elucidated or optimized, with different approaches to the same problem yielding varying results. We endeavor here to provide up-to-date expert opinion on the state-of-art and current fundamental, practical, and commercial challenges with DLD as well as describe experimental and modeling opportunities. Because these challenges and opportunities arise from constraints on hydrodynamics, fabrication, and operation at the micro- and nanoscale, we expect this Perspective to serve as a guide for the broader micro- and nanofluidic community to identify and to address open questions in the field

    Image widening not only a question of tip sample convolution

    No full text
    As the tip in the atomic force microscope is scanned over the sample surface an image results which contains information from the sample as well as from the tip. This mainly results in an increase of the apparent size of the sample. If the tip is reasonably sharp the contribution from the tip is small. In some cases the widening still persists in spite of a very sharp tip. In this letter, a model is presented which ascribes this to the lateral forces twisting the cantilever giving an offset between the apparent point of contact and the real point of contact. This results in a shift between forward and reverse scan of the sample position in the imaging window and, if the lateral forces due to the sample and substrate are different, a change in the apparent width of the sample

    Image widening not only a question of tip sample convolution

    Get PDF
    As the tip in the atomic force microscope is scanned over the sample surface an image results which contains information from the sample as well as from the tip. This mainly results in an increase of the apparent size of the sample. If the tip is reasonably sharp the contribution from the tip is small. In some cases the widening still persists in spite of a very sharp tip. In this letter, a model is presented which ascribes this to the lateral forces twisting the cantilever giving an offset between the apparent point of contact and the real point of contact. This results in a shift between forward and reverse scan of the sample position in the imaging window and, if the lateral forces due to the sample and substrate are different, a change in the apparent width of the sample

    Shape-based particle sorting - A new paradigm in microfluidics

    No full text
    Conventional fractionation techniques fail to fully benefit from the variety in morphology and shape that is found among biological particles. Although light scattering in conventional FACS gives some information on the size and morphology of a particle, it is generally not capable of giving a definite number on specified dimensions of a small object. We demonstrate an approach where we select which dimension of a particular object is used to determine its trajectory through an obstacle course and thereby sort not merely with respect to hydrodynamic radius but rather with respect to e.g. thickness, length or width

    Capillary driven separation on patterned surfaces

    No full text
    Deterministic lateral displacement (DLD) is a powerful bimodal separation scheme [1] based on fluid flow through regular obstacle arrays that in its basic embodiment sends suspended particles in two different directions as a function of size. We show that without the need to seal devices and without the need for fluidic connections or pumps, particle separation can be achieved by the passive flow of a sample over a patterned surface. Risk of clogging is minimized by the movement of large particles above the obstacle array. Suitable application areas include blood fractionation and analysis of drinking water.

    Gravitationally driven deterministic lateral displacement devices

    No full text
    Deterministic lateral displacement (DLD) is a powerful bimodal separation scheme [1] based on regular obstacle arrays that in its basic embodiment sends particles in two different directions as a function of size. We add functionality to the technique by including gravitational forces, as a perturbation to particles transported by fluid flow, and as a way of transporting the particles through a stationary fluid
    • ā€¦
    corecore