8,722 research outputs found
Crossover from time-correlated single-electron tunneling to that of Cooper pairs
We have studied charge transport in a one-dimensional chain of small
Josephson junctions using a single-electron transistor. We observe a crossover
from time-correlated tunneling of single electrons to that of Cooper pairs as a
function of both magnetic field and current. At relatively high magnetic field,
single-electron transport dominates and the tunneling frequency is given by
f=I/e, where I is the current through the chain and e is the electron's charge.
As the magnetic field is lowered, the frequency gradually shifts to f=I/2e for
I>200 fA, indicating Cooper-pair transport. For the parameters of the measured
sample, we expect the Cooper-pair transport to be incoherent.Comment: 5 pages, 4 figures; v2: minor changes, clarifications, addition
Low mass binary neutron star mergers : gravitational waves and neutrino emission
Neutron star mergers are among the most promising sources of gravitational
waves for advanced ground-based detectors. These mergers are also expected to
power bright electromagnetic signals, in the form of short gamma-ray bursts,
infrared/optical transients, and radio emission. Simulations of these mergers
with fully general relativistic codes are critical to understand the merger and
post-merger gravitational wave signals and their neutrinos and electromagnetic
counterparts. In this paper, we employ the SpEC code to simulate the merger of
low-mass neutron star binaries (two neutron stars) for a set of
three nuclear-theory based, finite temperature equations of state. We show that
the frequency peaks of the post-merger gravitational wave signal are in good
agreement with predictions obtained from simulations using a simpler treatment
of gravity. We find, however, that only the fundamental mode of the remnant is
excited for long periods of time: emission at the secondary peaks is damped on
a millisecond timescale in the simulated binaries. For such low-mass systems,
the remnant is a massive neutron star which, depending on the equation of
state, is either permanently stable or long-lived. We observe strong
excitations of l=2, m=2 modes, both in the massive neutron star and in the form
of hot, shocked tidal arms in the surrounding accretion torus. We estimate the
neutrino emission of the remnant using a neutrino leakage scheme and, in one
case, compare these results with a gray two-moment neutrino transport scheme.
We confirm the complex geometry of the neutrino emission, also observed in
previous simulations with neutrino leakage, and show explicitly the presence of
important differences in the neutrino luminosity, disk composition, and outflow
properties between the neutrino leakage and transport schemes.Comment: Accepted by PRD; 23 pages; 24 figures; 4 table
SpECTRE: A Task-based Discontinuous Galerkin Code for Relativistic Astrophysics
We introduce a new relativistic astrophysics code, SpECTRE, that combines a
discontinuous Galerkin method with a task-based parallelism model. SpECTRE's
goal is to achieve more accurate solutions for challenging relativistic
astrophysics problems such as core-collapse supernovae and binary neutron star
mergers. The robustness of the discontinuous Galerkin method allows for the use
of high-resolution shock capturing methods in regions where (relativistic)
shocks are found, while exploiting high-order accuracy in smooth regions. A
task-based parallelism model allows efficient use of the largest supercomputers
for problems with a heterogeneous workload over disparate spatial and temporal
scales. We argue that the locality and algorithmic structure of discontinuous
Galerkin methods will exhibit good scalability within a task-based parallelism
framework. We demonstrate the code on a wide variety of challenging benchmark
problems in (non)-relativistic (magneto)-hydrodynamics. We demonstrate the
code's scalability including its strong scaling on the NCSA Blue Waters
supercomputer up to the machine's full capacity of 22,380 nodes using 671,400
threads.Comment: 41 pages, 13 figures, and 7 tables. Ancillary data contains
simulation input file
Partially gapped fermions in 2D
We compute mean field phase diagrams of two closely related interacting
fermion models in two spatial dimensions (2D). The first is the so-called 2D
t-t'-V model describing spinless fermions on a square lattice with local
hopping and density-density interactions. The second is the so-called 2D
Luttinger model that provides an effective description of the 2D t-t'-V model
and in which parts of the fermion degrees of freedom are treated exactly by
bosonization. In mean field theory, both models have a charge-density-wave
(CDW) instability making them gapped at half-filling. The 2D t-t'-V model has a
significant parameter regime away from half-filling where neither the CDW nor
the normal state are thermodynamically stable. We show that the 2D Luttinger
model allows to obtain more detailed information about this mixed region. In
particular, we find in the 2D Luttinger model a partially gapped phase that, as
we argue, can be described by an exactly solvable model.Comment: v1: 36 pages, 10 figures, v2: minor corrections; equation references
to arXiv:0903.0055 updated
A return to strong radio flaring by Circinus X-1 observed with the Karoo Array Telescope test array KAT-7
Circinus X-1 is a bright and highly variable X-ray binary which displays
strong and rapid evolution in all wavebands. Radio flaring, associated with the
production of a relativistic jet, occurs periodically on a ~17-day timescale. A
longer-term envelope modulates the peak radio fluxes in flares, ranging from
peaks in excess of a Jansky in the 1970s to an historic low of milliJanskys
during the years 1994 to 2007. Here we report first observations of this source
with the MeerKAT test array, KAT-7, part of the pathfinder development for the
African dish component of the Square Kilometre Array (SKA), demonstrating
successful scientific operation for variable and transient sources with the
test array. The KAT-7 observations at 1.9 GHz during the period 13 December
2011 to 16 January 2012 reveal in temporal detail the return to the
Jansky-level events observed in the 1970s. We compare these data to
contemporaneous single-dish measurements at 4.8 and 8.5 GHz with the HartRAO
26-m telescope and X-ray monitoring from MAXI. We discuss whether the overall
modulation and recent dramatic brightening is likely to be due to an increase
in the power of the jet due to changes in accretion rate or changing Doppler
boosting associated with a varying angle to the line of sight.Comment: 7 pages, 5 figures, accepted for publication in MNRAS 14 May 201
Discovery of Interstellar Hydrogen Fluoride
We report the first detection of interstellar hydrogen fluoride. Using the
Long Wavelength Spectrometer (LWS) of the Infrared Space Observatory (ISO), we
have detected the 121.6973 micron J = 2 - 1 line of HF in absorption toward the
far-infrared continuum source Sagittarius B2. The detection is statistically
significant at the 13 sigma level. On the basis of our model for the excitation
of HF in Sgr B2, the observed line equivalent width of 1.0 nm implies a
hydrogen fluoride abundance of 3E-10 relative to H2. If the elemental abundance
of fluorine in Sgr B2 is the same as that in the solar system, then HF accounts
for ~ 2% of the total number of fluorine nuclei. We expect hydrogen fluoride to
be the dominant reservoir of gas-phase fluorine in Sgr B2, because it is formed
rapidly in exothermic reactions of atomic fluorine with either water or
molecular hydrogen; thus the measured HF abundance suggests a substantial
depletion of fluorine onto dust grains. Similar conclusions regarding depletion
have previously been reached for the case of chlorine in dense interstellar
clouds. We also find evidence at a lower level of statistical significance (~ 5
sigma) for an emission feature at the expected position of the 4(3,2)-4(2,3)
121.7219 micron line of water. The emission line equivalent width of 0.5 nm for
the water feature is consistent with the water abundance of 5E-6 relative to H2
that has been inferred previously from observations of the hot core of Sgr B2.Comment: 11 pages (AASTeX using aaspp4.sty) plus 2 figures; to appear in ApJ
Letter
- …