26 research outputs found

    Insights into the Evolution of Multicellularity from the Sea Lettuce Genome

    Get PDF
    We report here the 98.5 Mbp haploid genome (12,924 protein coding genes) of Ulva mutabilis, a ubiquitous and iconic representative of the Ulvophyceae or green seaweeds. Ulva’s rapid and abundant growth makes it a key contributor to coastal biogeochemical cycles; its role in marine sulfur cycles is particularly important because it produces high levels of dimethylsulfoniopropionate (DMSP), the main precursor of volatile dimethyl sulfide (DMS). Rapid growth makes Ulva attractive biomass feedstock but also increasingly a driver of nuisance “green tides.” Ulvophytes are key to understanding the evolution of multicellularity in the green lineage, and Ulva morphogenesis is dependent on bacterial signals, making it an important species with which to study cross-kingdom communication. Our sequenced genome informs these aspects of ulvophyte cell biology, physiology, and ecology. Gene family expansions associated with multicellularity are distinct from those of freshwater algae. Candidate genes, including some that arose following horizontal gene transfer from chromalveolates, are present for the transport and metabolism of DMSP. The Ulva genome offers, therefore, new opportunities to understand coastal and marine ecosystems and the fundamental evolution of the green lineage

    The cell cycle interactome and organelle proteins : sources of growth regulators

    Get PDF

    The cell-cycle interactome: a source of growth regulators?: The cell-cycle interactome: a source of growth regulators?

    No full text
    The cell-cycle interactome: a source of growth regulators?. The cell-cycle interactome: a source of growth regulators

    The cell-cycle interactome: a source of growth regulators?

    No full text

    A molecular toolkit for the green seaweed Ulva mutabilis

    No full text
    Abstract The green seaweed Ulva mutabilis is an ecologically important marine primary producer as well as a promising cash crop cultivated for multiple uses. Despite its importance, several molecular tools are still needed to better understand seaweed biology. Here, we report the development of a flexible and modular molecular cloning toolkit for the green seaweed U. mutabilis based on a Golden Gate cloning system. The toolkit presently contains 125 entry vectors, 26 destination vectors, and 107 functionally validated expression vectors. We demonstrate the importance of endogenous regulatory sequences for transgene expression and characterize three endogenous promoters suitable to drive transgene expression. We describe two vector architectures to express transgenes via two expression cassettes or a bicistronic approach. The majority of selected transformants (50%–80%) consistently give clear visual transgene expression. Furthermore, we made different marker lines for intracellular compartments after evaluating 13 transit peptides and 11 tagged endogenous Ulva genes. Our molecular toolkit enables the study of Ulva gain-of-function lines and paves the way for gene characterization and large-scale functional genomics studies in a green seaweed.</jats:p

    Auxin’s origin : do PILS hold the key?

    No full text
    Auxin is a key regulator of many developmental processes in land plants and plays a strikingly similar role in the phylogenetically distant brown seaweeds. Emerging evidence shows that the PIN and PIN-like (PILS) auxin transporter families have preceded the evolution of the canonical auxin response pathway. A wide conservation of PILS-mediated auxin transport, together with reports of auxin function in unicellular algae, would suggest that auxin function preceded the advent of multicellularity. We find that PIN and PILS transporters form two eukaryotic subfamilies within a larger bacterial family. We argue that future functional characterisation of algal PIN and PILS transporters can shed light on a common origin of an auxin function followed by independent co-option in a multicellular context

    Plants grow with a little help from their organelle friends

    No full text
    Chloroplasts and mitochondria are indispensable for plant development. They not only provide energy and carbon sources to cells, but also have evolved to become major players in a variety of processes such as amino acid metabolism, hormone biosynthesis and cellular signalling. As semi-autonomous organelles, they contain a small genome that relies largely on nuclear factors for its maintenance and expression. An intensive crosstalk between the nucleus and the organelles is therefore essential to ensure proper functioning, and the nuclear genes encoding organellar proteins involved in photosynthesis and oxidative phosphorylation are obviously crucial for plant growth. Organ growth is determined by two main cellular processes: cell proliferation and cell expansion. Here, we review how plant growth is affected in mutants of organellar proteins that are differentially expressed during leaf and root development. Our findings indicate a clear role for organellar proteins in plant organ growth, primarily during cell proliferation. However, to date, the role of the nuclear-encoded organellar proteins in the cellular processes driving organ growth has not been investigated in much detail. We therefore encourage researchers to extend their phenotypic characterization beyond macroscopic features in order to get a better view on how chloroplasts and mitochondria regulate the basic processes of cell proliferation and cell expansion, essential to driving growth
    corecore