103 research outputs found

    Intermodulation electrostatic force microscopy for imaging surface photo-voltage

    Full text link
    We demonstrate an alternative to Kelvin Probe Force Microscopy for imaging surface potential. The open-loop, single-pass technique applies a low-frequency AC voltage to the atomic force microscopy tip while driving the cantilever near its resonance frequency. Frequency mixing due to the nonlinear capacitance gives intermodulation products of the two drive frequencies near the cantilever resonance, where they are measured with high signal to noise ratio. Analysis of this intermodulation response allows for quantitative reconstruction of the contact potential difference. We derive the theory of the method, validate it with numerical simulation and a control experiment, and we demonstrate its utility for fast imaging of the surface photo-voltage on an organic photo-voltaic material.Comment: 4 pages, 3 figures, peer-reviewed, preprin

    Appearance of remodelled and dendritic cell-rich alveolar-lymphoid interfaces provides a structural basis for increased alveolar antigen uptake in chronic obstructive pulmonary disease.

    Get PDF
    RATIONALE: The alveolar pathology in chronic obstructive pulmonary disease (COPD) involves antigen-driven immune events. However, the induction sites of alveolar adaptive immune responses have remained poorly investigated. OBJECTIVES: To explore the hypothesis that interfaces between the alveolar lumen and lymphoid aggregates (LAs) provide a structural basis for increased alveolar antigen uptake in COPD lungs. METHODS: Lung samples from patients with mild (Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage I), moderate-severe (GOLD II-III), and very severe (GOLD IV) COPD were subjected to detailed histological assessments of adaptive immune system components. Never smokers and smokers without COPD served as controls. RESULTS: Quantitative histology, involving computerised three-dimensional reconstructions, confirmed a rich occurrence of alveolar-restricted LAs and revealed, for the first time, that the vast majority of vascular or bronchiolar associated LAs had alveolar interfaces but also an intricate network of lymphatic vessels. Uniquely to COPD lungs, the interface epithelium had transformed into a columnar phenotype. Accumulation of langerin (CD207)(+) dendritic cells occurred in the interface epithelium in patients with COPD but not controls. The antigen-capturing capacity of langerin(+) dendritic cells was confirmed by increased alveolar protrusions and physical T cell contact. Several of these immune remodelling parameters correlated with lung function parameters. CONCLUSIONS: Severe stages of COPD are associated with an emergence of remodelled and dendritic cell-rich alveolar-lymphoid interfaces. This novel type of immune remodelling, which predicts an increased capacity to respond to alveolar antigens, is suggested to contribute to aggravated inflammation in COPD

    A Facile Method to Enhance Photovoltaic Performance of Benzodithiophene-Isoindigo Polymers by Inserting Bithiophene Spacer

    Get PDF
    This study describes the synthesis and characterization of four polymers based on benzo[1,2-b:4,5-b']dithiophene (BDT) and isoindigo with zero, one, two, and three thiophene spacer groups. Results have demonstrated that the use of bithiophene as a spacer unit improves the geometry of the polymer chain, making it planar, and hence, potentially enhanced π- π stacking occurs. Due to favorable interaction of the polymer chains, enhanced absorption coefficient, and optimal morphology, PBDT-BTI, which possesses bithiophene as a spacer, revealed high current and fill factor leading to a power conversion efficiency of 7.3% in devices, making this polymer the best performing isoindigo-based material in polymer solar cells (PSCs). Also, PBDT-BTI could still maintain efficiency of over 6% with the active layer thickness of 270 nm, making it a potential candidate for a material in printed PSCs. These results demonstrate that the use of thiophene spacers in D-A polymers could be an important design strategy to produce high-performance PSCs

    A simple method for assigning genomic grade to individual breast tumours

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prognostic value of grading in breast cancer can be increased with microarray technology, but proposed strategies are disadvantaged by the use of specific training data or parallel microscopic grading. Here, we investigate the performance of a method that uses no information outside the breast profile of interest.</p> <p>Results</p> <p>In 251 profiled tumours we optimised a method that achieves grading by comparing rank means for genes predictive of high and low grade biology; a simpler method that allows for truly independent estimation of accuracy. Validation was carried out in 594 patients derived from several independent data sets. We found that accuracy was good: for low grade (G1) tumors 83- 94%, for high grade (G3) tumors 74- 100%. In keeping with aim of improved grading, two groups of intermediate grade (G2) cancers with significantly different outcome could be discriminated.</p> <p>Conclusion</p> <p>This validates the concept of microarray-based grading in breast cancer, and provides a more practical method to achieve it. A simple R script for grading is available in an additional file. Clinical implementation could achieve better estimation of recurrence risk for 40 to 50% of breast cancer patients.</p
    • 

    corecore