33 research outputs found

    Understanding of research, genetics and genetic research in a rapid ethical assessment in north west Cameroon

    Get PDF
    BACKGROUND There is limited assessment of whether research participants in low-income settings are afforded a full understanding of the meaning of medical research. There may also be particular issues with the understanding of genetic research. We used a rapid ethical assessment methodology to explore perceptions surrounding the meaning of research, genetics and genetic research in north west Cameroon. METHODS Eleven focus group discussions (including 107 adults) and 72 in-depth interviews were conducted with various stakeholders in two health districts in north west Cameroon between February and April 2012. RESULTS Most participants appreciated the role of research in generating knowledge and identified a difference between research and healthcare but gave varied explanations as to this difference. Most participants' understanding of genetics was limited to concepts of hereditary, with potential benefits limited to the level of the individual or family. Explanations based on supernatural beliefs were identified as a special issue but participants tended not to identify any other special risks with genetic research. CONCLUSION We demonstrated a variable level of understanding of research, genetics and genetic research, with implications for those carrying out genetic research in this and other low resource settings. Our study highlights the utility of rapid ethical assessment prior to complex or sensitive research

    Highlights on the application of genomics and bioinformatics in the fight against infectious diseases : challenges and opportunities in Africa

    Get PDF
    Genomics and bioinformatics are increasingly contributing to our understanding of infectious diseases caused by bacterial pathogens such as Mycobacterium tuberculosis and parasites such as Plasmodium falciparum. This ranges from investigations of disease outbreaks and pathogenesis, host and pathogen genomic variation, and host immune evasion mechanisms to identification of potential diagnostic markers and vaccine targets. High throughput genomics data generated from pathogens and animal models can be combined with host genomics and patients’ health records to give advice on treatment options as well as potential drug and vaccine interactions. However, despite accounting for the highest burden of infectious diseases, Africa has the lowest research output on infectious disease genomics. Here we review the contributions of genomics and bioinformatics to the management of infectious diseases of serious public health concern in Africa including tuberculosis (TB), dengue fever, malaria and filariasis. Furthermore, we discuss how genomics and bioinformatics can be applied to identify drug and vaccine targets. We conclude by identifying challenges to genomics research in Africa and highlighting how these can be overcome where possible

    Immune Responses to the Sexual Stages of Plasmodium falciparum Parasites.

    Get PDF
    Malaria infections remain a serious global health problem in the world, particularly among children and pregnant women in Sub-Saharan Africa. Moreover, malaria control and elimination is hampered by rapid development of resistance by the parasite and the vector to commonly used antimalarial drugs and insecticides, respectively. Therefore, vaccine-based strategies are sorely needed, including those designed to interrupt disease transmission. However, a prerequisite for such a vaccine strategy is the understanding of both the human and vector immune responses to parasite developmental stages involved in parasite transmission in both man and mosquito. Here, we review the naturally acquired humoral and cellular responses to sexual stages of the parasite while in the human host and the Anopheles vector. In addition, updates on current anti-gametocyte, anti-gamete, and anti-mosquito transmission blocking vaccines are given. We conclude with our views on some important future directions of research into P. falciparum sexual stage immunity relevant to the search for the most appropriate transmission-blocking vaccine

    Further evidence of the cross-reactivity of the Binax NOW® Filariasis ICT cards to non-Wuchereria bancrofti filariae: experimental studies with Loa loa and Onchocerca ochengi

    Get PDF
    Background The immunochromatographic test (ICT) for lymphatic filariasis is a serological test designed for unequivocal detection of circulating Wuchereria bancrofti antigen. It was validated and promoted by WHO as the primary diagnostic tool for mapping and impact monitoring for disease elimination following interventions. The initial tests for specificity and sensitivity were based on samples collected in areas free of loiasis and the results suggested a near 100 % specificity for W. bancrofti. The possibility of cross-reactivity with non-Wuchereria bancrofti antigens was not investigated until recently, when false positive results were observed in three independent studies carried out in Central Africa. Associations were demonstrated between ICT positivity and Loa loa microfilaraemia, but it was not clearly established if these false positive results were due to L. loa or can be extended to other filarial nematodes. This study brought further evidences of the cross-reactivity of ICT card with L. loa and Onchocerca ochengi (related to O. volvulus parasite) using in vivo and in vitro systems. Methods Two filarial/host experimental systems (L. loa-baboon and O. ochengi-cattle) and the in vitro maintenance of different stages (microfilariae, infective larvae and adult worm) of the two filariae were used in three experiments per filarial species. First, whole blood and sera samples were prepared from venous blood of patent baboons and cattle, and applied on ICT cards to detect circulating filarial antigens. Secondly, larval stages of L. loa and O. ochengi as well as O. ochengi adult males were maintained in vitro. Culture supernatants were collected and applied on ICT cards after 6, 12 and 24 h of in vitro maintenance. Finally, total worm extracts (TWE) were prepared using L. loa microfilariae (Mf) and O. ochengi microfilariae, infective larvae and adult male worms. TWE were also tested on ICT cards. For each experiment, control assays (whole blood and sera from uninfected babon/cattle, culture medium and extraction buffer) were performed. Results Positive ICT results were obtained with whole blood and sera of L. loa microfilaremic baboons, culture supernatants of L. loa Mf and infective larvae as well as with L. loa Mf protein extracts. In contrast, negative ICT results were observed with whole blood and sera from the O. ochengi-cattle system. Surprisingly, culture supernatant of O. ochengi adult males and total worm extracts (Mf, infective larvae and adult worm) were positive to the test. Conclusions This study has provided further evidence of L. loa cross-reactivity for the ICT card. All stages of L. loa seem capable of inducing the cross-reactivity. Onchocerca ochengi. can also induce cross-reactivity in vitro, but this is less likely in vivo due to the location of parasite. The availability of the parasite proteins in the blood stream determines the magnitude of the cross-reactivity. The cross-reactivity of the ICT card to these non-W. bancrofti filariae poses some doubts to the reliability and validity of the current map of LF of Central Africa that was generated using this diagnostic tool

    Molecular Drivers of Multiple and Elevated Resistance to Insecticides in a Population of the Malaria Vector Anopheles gambiae in Agriculture Hotspot of West Cameroon

    Get PDF
    Background: Malaria remains a global public health problem. Unfortunately, the resistance of malaria vectors to commonly used insecticides threatens disease control and elimination efforts. Field mosquitoes have been shown to survive upon exposure to high insecticide concentrations. The molecular mechanisms driving this pronounced resistance remain poorly understood. Here, we elucidated the pattern of resistance escalation in the main malaria vector Anopheles gambiae in a pesticide-driven agricultural hotspot in Cameroon and its impact on vector control tools; Methods: Larval stages and indoor blood-fed female mosquitoes (F0) were collected in Mangoum in May and November and forced to lay eggs; the emerged mosquitoes were used for WHO tube, synergist and cone tests. Molecular identification was performed using SINE PCR, whereas TaqMan-based PCR was used for genotyping of L1014F/S and N1575Y kdr and the G119S-ACE1 resistance markers. The transcription profile of candidate resistance genes was performed using qRT-PCR methods. Characterization of the breeding water and soil from Mangoum was achieved using the HPLC technique; Results: An. gambiae s.s. was the only species in Mangoum with 4.10% infection with Plasmodium. These mosquitoes were resistant to all the four classes of insecticides with mortality rates <7% for pyrethroids and DDT and <54% for carbamates and organophophates. This population also exhibited high resistance intensity to pyrethroids (permethrin, alpha-cypermethrin and deltamethrin) after exposure to 5Ă— and 10Ă— discriminating doses. Synergist assays with PBO revealed only a partial recovery of susceptibility to permethrin, alpha-cypermethrin and deltamethrin. Only PBO-based nets (Olyset plus and permaNet 3.0) and Royal Guard showed an optimal efficacy. A high amount of alpha-cypermethrin was detected in breeding sites (5.16-fold LOD) suggesting ongoing selection from agricultural pesticides. The 1014F-kdr allele was fixed (100%) whereas the 1575Y-kdr (37.5%) and the 119S Ace-1R (51.1%) were moderately present. Elevated expression of P450s, respectively, in permethrin and deltamethrin resistant mosquitoes [CYP6M2 (10 and 34-fold), CYP6Z1(17 and 29-fold), CYP6Z2 (13 and 65-fold), CYP9K1 (13 and 87-fold)] supports their role in the observed resistance besides other mechanisms including chemosensory genes as SAP1 (28 and 13-fold), SAP2 (5 and 5-fold), SAP3 (24 and 8-fold) and cuticular genes as CYP4G16 (6 and 8-fold) and CYP4G17 (5 and 27-fold). However, these candidate genes were not associated with resistance escalation as the expression levels did not differ significantly between 1Ă—, 5Ă— and 10Ă— surviving mosquitoes; Conclusions: Intensive and multiple resistance is being selected in malaria vectors from a pesticide-based agricultural hotspot of Cameroon leading to loss in the efficacy of pyrethroid-only nets. Further studies are needed to decipher the molecular basis underlying such resistance escalation to better assess its impact on control interventions

    A Comparative analysis of economic cost of podoconiosos and leprosy on affected households in Northwest region of Cameroon

    Get PDF
    Leprosy and podoconiosis (podo) are neglected tropical diseases that cause severe disfigurement and disability, and may lead to catastrophic health expenditure and hinder economic development of affected persons and households. This study compared economic costs of both diseases on affected households with unaffected neighboring households in the Northwest Region (N.W.R.) of Cameroon. A matched comparative cross-sectional design was used enrolling 170 households (43 podo case households, 41 podo control households, 43 leprosy case households, and 43 leprosy control households) from three health districts in the N.W.R. Direct treatment costs for podo averaged 142 United State dollar (USD), compared with zero for leprosy (P < 0.001). This was also reflected in the proportion of annual household income consumed (0.4 versus 0.0, respectively, P < 0.001). Both diseases caused considerable reductions in working days (leprosy 115 versus podo 135 days. P for comparison < 0.001). The average household income was considerably lower in podo-affected households than unaffected households (410 versus 913 USD, P = 0.01), whereas income of leprosy-affected households was comparable to unaffected households (329 versus 399 USD, P = 0.23). Both leprosy and podo cause financial burdens on affected households, but those on podo-affected families are much greater. These burdens occur through direct treatment costs and reduced ability to work. Improved access to public health interventions for podo including prevention, morbidity management and disability prevention are likely to result in economic returns to affected families. In Cameroon, one approach to this would be through subsidized health insurance for these economically vulnerable households

    An analysis of social dimensions of podoconiosis and leprosy on affected households in endemic health districts of the North West Region of Cameroon

    Get PDF
    Background: Podoconiosis and leprosy are Neglected Tropical Diseases associated with low quality of life, social stigma and isolation of affected people and families. Despite the substantial social burden it imposes, podoconiosis has largely been ignored in the global health literature until recently unlike leprosy. This study assessed and compared the quality of life and social impact of podoconiosis with that of leprosy among affected households and neighborhoods in North West Cameroon. Methods: A comparative cross-sectional design was used. Eighty-six households: 43 podoconiosis and 43 leprosy, plus household neighbours were enrolled from July and August 2015 from three health districts. Podoconiosis patients living in households within Batibo and Ndop health districts were sequentially sampled using a list of confirmed podoconioisis cases from previous studies. Leprosy patients living within communities in Mejang Health Area were sequentially sampled using the Mbingo treatment center register. WHO BREF tool was used to assess quality of life. Franklin Stigma Scale was adapted to assess felt and enacted stigma. Mann-Whitney U test was used to compare differences in stigma and QoL. Results: Physical domain showed a significant difference in the distribution in quality of life between groups (p < 0.05, median:70; U:635, r = 0.2). Overall enacted stigma revealed significant differences with p < 0.05 and r = 0.4. Overall stigma from family members (median:17, U:627 and r = 0.3) and neighbours (median:67, U:336 and r = 0.5) showed significant differences with p < 0.05 in the distribution of scores for both diseases. Sex and age showed significant associations with QoL and stigma. Conclusion: This study reveals the quality of life and stigma associated with podoconiosis on affected households to be comparable to that experienced by households with a leprosy patient. There is need for intensified preventive, management and control schemes to fight podoconiosis in Cameroon, just like leprosy

    Cross-Reactivity of Filariais ICT Cards in Areas of Contrasting Endemicity of Loa loa and Mansonella perstans in Cameroon: Implications for Shrinking of the Lymphatic Filariasis Map in the Central African Region

    Get PDF
    Background Immunochromatographic card test (ICT) is a tool to map the distribution of Wuchereria bancrofti. In areas highly endemic for loaisis in DRC and Cameroon, a relationship has been envisaged between high L. loa microfilaria (Mf) loads and ICT positivity. However, similar associations have not been demonstrated from other areas with contrasting levels of L. loa endemicity. This study investigated the cross-reactivity of ICT when mapping lymphatic filariasis (LF) in areas with contrasting endemicity levels of loiasis and mansonellosis in Cameroon

    The global transcriptome of Plasmodium falciparum mid-stage gametocytes (stages II–IV) appears largely conserved and gametocyte-specific gene expression patterns vary in clinical isolates

    Get PDF
    Our overall understanding of the developmental biology of malaria parasites has been greatly enhanced by recent advances in transcriptomic analysis. However, most of these investigations rely on laboratory strains (LS) that were adapted into in vitro culture many years ago, and the transcriptomes of clinical isolates (CI) circulating in human populations have not been assessed. In this study, RNA-seq was used to compare the global transcriptome of mid-stage gametocytes derived from three short-term cultured CI, with gametocytes derived from the NF54 reference laboratory strain. The core transcriptome appeared to be consistent between CI- and LS-derived gametocyte preparations, but some important differences were also observed. A majority of gametocyte-specific genes (43/53) appear to have relatively higher expression in CI-derived gametocytes than in LS-derived gametocytes, but a K-means clustering analysis showed that genes involved in flagellum- and microtubule-based processes (movement/motility) were more abundant in both groups, albeit with some differences between them. In addition, gametocytes from one CI described as CI group II gametocytes (CI:GGII) showed gene expression variation in the form of reduced gametocyte-specific gene expression compared to the other two CI-derived gametocytes (CI gametocyte group I, CI:GGI), although the mixed developmental stages used in our study is a potential confounder, only partially mitigated by the inclusion of multiple replicates for each CI. Overall, our study suggests that there may be subtle differences in the gene expression profiles of mid-stage gametocytes from CI relative to the NF54 reference strain of Plasmodium falciparum . Thus, it is necessary to deploy gametocyte-producing clinical parasite isolates to fully understand the diversity of gene expression strategies that may occur during the sequestered development of parasite sexual stages. IMPORTANCE Maturing gametocytes of Plasmodium falciparum are known to sequester away from peripheral circulation into the bone marrow until they are mature. Blocking gametocyte sequestration can prevent malaria transmission from humans to mosquitoes, but most studies aim to understand gametocyte development utilizing long-term adapted laboratory lines instead of clinical isolates. This is a particular issue for our understanding of the sexual stages, which are known to decrease rapidly during adaptation to long-term culture, meaning that many LS are unable to produce transmissible gametocytes. Using RNA-seq, we investigated the global transcriptome of mid-stage gametocytes derived from three clinical isolates and a reference strain (NF54). This identified important differences in gene expression profiles between immature gametocytes of CI and the NF54 reference strain of P . falciparum , suggesting increased investment in gametocytogenesis in clinical isolates. Our transcriptomic data highlight the use of clinical isolates in studying the morphological, cellular features and molecular biology of gametocytes
    corecore