1,041 research outputs found

    Postoperative Bleb Management with Topical Mitomycin-C

    Get PDF

    Neuroretinal Rim Area and Body Mass Index

    Get PDF
    Purpose: To examine associations between neuroretinal rim area, pressure related factors and anthropometric parameters in a population-based setting. Methods: The population-based cross-sectional Beijing Eye Study 2006 included 3251 subjects with an age of 45+ years. The participants underwent a detailed ophthalmic examination. Exclusion criteria for our study were high myopia of more than-8 diopters and angle-closure glaucoma. Results: The study included 2917 subjects with a mean age of 59.869.8 years (range: 45–89 years). Mean neuroretinal rim area was 1.9760.38 mm 2, mean intraocular pressure 15.663.0 mmHg, mean diastolic blood pressure 79.065.9 mm Hg, mean systolic blood pressure 133.5611.1 mmHg, and mean body mass index was 25.563.7. In univariate analysis, neuroretinal rim area was significantly associated with optic disc size, open-angle glaucoma, refractive error, age and gender. After adjustment for these parameters in a multivariate analysis, a larger neuroretinal rim area was significantly correlated with a higher body mass index (P,0.001), in addition to be associated with a lower intraocular pressure (P = 0.004), lower mean blood pressure (P = 0.02), and higher ocular perfusion pressure. Conclusions: In a general population, neuroretinal rim as equivalent of the optic nerve fibers is related to a higher body mass index, after adjustment for disc area, refractive error, age, gender, open-angle glaucoma, intraocular pressure, blood pressure and ocular perfusion pressure. Since body mass index is associated with cerebrospinal fluid pressure, the latter ma

    Scleral Thickness in Human Eyes

    Get PDF
    Purpose: To obtain information about scleral thickness in different ocular regions and its associations. Methods: The histomorphometric study included 238 human globes which had been enucleated because of choroidal melanomas or due to secondary angle-closure glaucoma. Using light microscopy, anterior-posterior pupil-optic nerve sections were measured. Results: In the non-axially elongated group (axial length #26 mm), scleral thickness decreased from the limbus (0.5060.11 mm) to the ora serrata (0.4360.14 mm) and the equator (0.4260.15 mm), and then increased to the midpoint between posterior pole and equator (0.6560.15 mm) and to the posterior pole (0.9460.18 mm), from where it decreased to the peri-optic nerve region (0.8660.21 mm) and finally the peripapillary scleral flange (0.3960.09 mm). Scleral thickness was significantly lower in the axially elongated group (axial length.26 mm) than in the non-axially elongated group for measurements taken at and posterior to the equator. Scleral thickness measurements of the posterior pole and of the peripapillary scleral flange were correlated with lamina cribrosa thickness measurements. Scleral thickness measurements at any location of examination were not significantly (all P.0.10) correlated with corneal thickness measurements. Scleral thickness was statistically independent of age, gender and presence of glaucoma. Conclusions: In non-axially elongated eyes, the sclera was thickest at the posterior pole, followed by the peri-optic nerv

    Analysis of Cerebrospinal Fluid Pressure Estimation Using Formulae Derived From Clinical Data

    Get PDF
    Purpose: To evaluate a frequently used regression model and a new, modified regression model to estimate cerebrospinal fluid pressure (CSFP). Methods: Datasets from the Beijing iCOP study from Tongren Hospital, Beijing, China, and the Mayo Clinic, Rochester, Minnesota, were tested in this retrospective, case-control study. An often-used regression model derived from the Beijing iCOP dataset, but without radiographic data, was used to predict CSFP by using demographic and physiologic data. A regression model was created using the Mayo Clinic dataset and tested against a validation group. The Mayo Clinic-derived formula was also tested against the Beijing Eye Study population. Intraclass correlation was used to assess predicted versus actual CSFP. Results: The Beijing-derived regression equation was reported to have an intraclass correlation coefficient (ICC) of 0.71, indicating strong correlation between predicted and actual CSFP in the study population. The Beijing iCOP regression model poorly predicted CSFP in the Mayo Clinic population with an ICC of 0.14. The Mayo Clinic-derived regression model similarly did not predict CSFP in its Mayo Clinic validation group (ICC 0.28 ± 0.04) nor in the Beijing Eye Study population (ICC 0.06). Conclusions: Formulae used to predict CSFP derived from clinical data fared poorly against a large retrospective dataset. This may be related to differences in lumbar puncture technique, in the populations tested, or the timing of collection of physiologic variables in the Mayo Clinic dataset. Caution should be used when interpreting results based on formulaic derivation of CSFP

    The proportion of individuals likely to benefit from customized optic nerve head structure-function mapping

    Get PDF
    yesPurpose: Inter-individual variance in optic nerve head (ONH) position, axial length and location of the temporal raphe suggest that customizing mapping between visual field locations and optic nerve head sectors for individuals may be clinically useful. Here we quantify the proportion of the population predicted to have structure-function mappings that markedly deviate from “average”, and thus would benefit from customized mapping. Design: Database study and case report Participants: Population database of 2836 eyes from the Beijing Eye Study; single case report of an individual with primary open angle glaucoma Methods: Using the morphometric fundus data of the Beijing Eye Study on 2836 eyes and applying a recently developed model based on axial length and ONH position relative to the fovea, we determined for each measurement location in the 24-2 Humphrey visual field the proportion of eyes for which, in the customized approach as compared to the generalized approach, the mapped ONH sector was shifted into a different sector. We determined the proportion of eyes for which the mapped ONH location was shifted by 15°, 30° or 60°. Main outcome measures: Mapping correspondence between locations in visual field space to localized sectors on the optic nerve head Results: The largest inter-individual differences in mapping are in the nasal step region where the same visual field location can map to either the superior or inferior ONH depending on other anatomical features. For these visual field locations, approximately 12% of eyes showed a mapping opposite to conventional expectations. Conclusions: Anatomically customised mapping shifts the map markedly in approximately 12% of the general population in the nasal step region where visual field locations can map to the opposite pole of the ONH than conventionally considered. Early glaucomatous damage commonly affects this region, hence individually matching structure to function may prove clinically useful for the diagnosis and monitoring of progression within individuals.Australian Research Council Linkage Project 130100055 (industry partner, Heidelberg Engineering, GmBH, Germany)

    Effect of changing heart rate on the ocular pulse and dynamic biomechanical behavior of the optic nerve head

    Get PDF
    Purpose: To study the effect of changing heart rate on the ocular pulse and the dynamic biomechanical behavior of the optic nerve head (ONH) using a comprehensive mathematical model. Methods: In a finite element model of a healthy eye, a biphasic choroid consisted of a solid phase with connective tissues and a fluid phase with blood, and the lamina cribrosa (LC) was viscoelastic as characterized by a stress-relaxation test. We applied arterial pressures at 18 ocular entry sites (posterior ciliary arteries), and venous pressures at four exit sites (vortex veins). In the model, the heart rate was varied from 60 to 120 bpm (increment: 20 bpm). We assessed the ocular pulse amplitude (OPA), pulse volume, ONH deformations, and the dynamic modulus of the LC at different heart rates. Results: With an increasing heart rate, the OPA decreased by 0.04 mm Hg for every 10 bpm increase in heart rate. The ocular pulse volume decreased linearly by 0.13 µL for every 10 bpm increase in heart rate. The storage modulus and the loss modulus of the LC increased by 0.014 and 0.04 MPa, respectively, for every 10 bpm increase in heart rate. Conclusions: In our model, the OPA, pulse volume, and ONH deformations decreased with an increasing heart rate, whereas the LC became stiffer. The effects of blood pressure/heart rate changes on ONH stiffening may be of interest for glaucoma pathology
    • …
    corecore