2,646 research outputs found

    Imaging of the microstructure of Carbopol dispersions and correlation with their macroelasticity: A micro- and macrorheological study

    Get PDF
    We developed a new data analysis strategy, the so-called micro-rheo-mapping technique, based on multiparticle tracking experiments to obtain an accurate and direct visualization of the microstructure of commercial acrylate thickeners of Carbopol-type with high (Ultrez 10), intermediate (ETD 2020), and low (ETD 2050) degree of crosslinking. At low polymer concentration, aggregates made of several primary Carbopol particles are formed with an average diameter of 43 ± 11, 56 ± 14, and 10 ± 2.5 μm for Ultrez 10, ETD 2020, and ETD 2050, respectively. For ETD 2050, the least crosslinked thickener, the shell of dangling polymer chains covering the aggregate surface is thicker than for ETD 2020 and Ultrez 10. At technically relevant polymer concentrations, our results indicate, for all three thickeners, that the microstructure is highly heterogeneous with regions of different crosslink densities. One region inaccessible for tracer particles corresponding to a mixture of polydisperse aggregates and individual primary particles with a core mesh size less than 200 nm and a second, diluted enough to be accessible and which exhibits both elastic and viscous characteristics. The study of the impact of pH, polymer concentration, and crosslink density on these local structural and viscoelastic heterogeneities as well as macrorheological properties allowed us to establish a correlation between microstructure and macroelasticity. In particular, we found that the bulk shear modulus strongly depends on the fraction of inaccessible areas, making this microscopic parameter most relevant for describing the macroelasticity of Carbopol gels, whereas the local elasticity of the interstitial regions is of minor importance

    Gravitational lens modelling in a citizen science context

    Full text link
    We develop a method to enable collaborative modelling of gravitational lenses and lens candidates, that could be used by non-professional lens enthusiasts. It uses an existing free-form modelling program (glass), but enables the input to this code to be provided in a novel way, via a user-generated diagram that is essentially a sketch of an arrival-time surface. We report on an implementation of this method, SpaghettiLens, which has been tested in a modelling challenge using 29 simulated lenses drawn from a larger set created for the Space Warps citizen science strong lens search. We find that volunteers from this online community asserted the image parities and time ordering consistently in some lenses, but made errors in other lenses depending on the image morphology. While errors in image parity and time ordering lead to large errors in the mass distribution, the enclosed mass was found to be more robust: the model-derived Einstein radii found by the volunteers were consistent with those produced by one of the professional team, suggesting that given the appropriate tools, gravitational lens modelling is a data analysis activity that can be crowd-sourced to good effect. Ideas for improvement are discussed, these include (a) overcoming the tendency of the models to be shallower than the correct answer in test cases, leading to systematic overestimation of the Einstein radius by 10 per cent at present, and (b) detailed modelling of arcs.Comment: 10 pages, 12 figure

    Comparison of methods used in European National Forest Inventories for the estimation of volume increment: towards harmonisation

    Get PDF
    International audienceAbstractKey messageThe increment estimation methods of European NFIs were explored by means of 12 essential NFI features. The results indicate various differences among NFIs within the commonly acknowledged methodological frame. The perspectives for harmonisation at the European level are promising.ContextThe estimation of increment is implemented differently in European National Forest Inventories (NFIs) due to different historical origins of NFIs and sampling designs and field assessments accommodated to country-specific conditions. The aspired harmonisation of increment estimation requires a comparison and an analysis of NFI methods.AimsThe objective was to investigate the differences in volume increment estimation methods used in European NFIs. The conducted work shall set a basis for harmonisation at the European level which is needed to improve information on forest resources for various strategic processes. MethodsA comprehensive enquiry was conducted during Cost Action FP1001 to explore the methods of increment estimation of 29 European NFIs. The enquiry built upon the preceding Cost Action E43 and was complemented by an analysis of literature to demonstrate the methodological backgrounds. ResultsThe comparison of methods revealed differences concerning the NFI features such as sampling grids, periodicity of assessments, permanent and temporary plots, use of remote sensing, sample tree selection, components of forest growth, forest area changes, sampling thresholds, field measurements, drain assessment, involved models and tree parts included in estimates. ConclusionIncrement estimation methods differ considerably among European NFIs. Their harmonisation introduces new issues into the harmonisation process. Recent accomplishments and the increased use of sample-based inventories in Europe make perspectives for harmonised reporting of increment estimation promising

    Improving Reconstituted HDL Composition for Efficient Post-Ischemic Reduction of Ischemia Reperfusion Injury

    Get PDF
    BACKGROUND: New evidence shows that high density lipoproteins (HDL) have protective effects beyond their role in reverse cholesterol transport. Reconstituted HDL (rHDL) offer an attractive means of clinically exploiting these novel effects including cardioprotection against ischemia reperfusion injury (IRI). However, basic rHDL composition is limited to apolipoprotein AI (apoAI) and phospholipids; addition of bioactive compound may enhance its beneficial effects. Objective The aim of this study was to investigate the role of rHDL in post-ischemic model, and to analyze the potential impact of sphingosine-1-phosphate (S1P) in rHDL formulations. Methods and RESULTS: The impact of HDL on IRI was investigated using complementary in vivo , ex vivo and in vitro IRI models. Acute post-ischemic treatment with native HDL significantly reduced infarct size and cell death in the ex vivo , isolated heart (Langendorff) model and the in vivo model (-48%, p<0.01). Treatment with rHDL of basic formulation (apoAI + phospholipids) had a non-significant impact on cell death in vitro and on the infarct size ex vivo and in vivo . In contrast, rHDL containing S1P had a highly significant, protective influence ex vivo , and in vivo (-50%, p<0.01). This impact was comparable with the effects observed with native HDL. Pro-survival signaling proteins, Akt, STAT3 and ERK1/2 were similarly activated by HDL and rHDL containing S1P both in vitro (isolated cardiomyocytes) and in vivo . CONCLUSION: HDL afford protection against IRI in a clinically relevant model (post-ischemia). rHDL is significantly protective if supplemented with S1P. The protective impact of HDL appears to target directly the cardiomyocyte

    Gravitational lens modelling in a citizen science context

    Get PDF
    We develop a method to enable collaborative modelling of gravitational lenses and lens candidates, that could be used by non-professional lens enthusiasts. It uses an existing free-form modelling program (glass), but enables the input to this code to be provided in a novel way, via a user-generated diagram that is essentially a sketch of an arrival-time surface. We report on an implementation of this method, SpaghettiLens, which has been tested in a modelling challenge using 29 simulated lenses drawn from a larger set created for the Space Warps citizen science strong lens search. We find that volunteers from this online community asserted the image parities and time ordering consistently in some lenses, but made errors in other lenses depending on the image morphology. While errors in image parity and time ordering lead to large errors in the mass distribution, the enclosed mass was found to be more robust: the model-derived Einstein radii found by the volunteers were consistent with those produced by one of the professional team, suggesting that given the appropriate tools, gravitational lens modelling is a data analysis activity that can be crowd-sourced to good effect. Ideas for improvement are discussed; these include (a) overcoming the tendency of the models to be shallower than the correct answer in test cases, leading to systematic overestimation of the Einstein radius by 10 per cent at present, and (b) detailed modelling of arc

    The effect of high-dose erythropoietin perinatally on retinal function in school-aged children born extremely or very preterm

    Get PDF
    PURPOSE: To investigate the long-term effects of high-dose recombinant human erythropoietin (rhEPO) administered during the perinatal period on retinal and visual function in children born extremely or very preterm. DESIGN: Randomized, double-blind clinical trial follow-up plus cohort study. METHODS: Setting: Department of Ophthalmology, University Hospital Zurich, Zurich, Switzerland. Study population: extremely or very preterm-born children aged 7-15 years, previously randomized to receive either high-dose rhEPO or placebo in the perinatal period. Inclusion criteria: participation in an ongoing neuropediatric study (EpoKids), written informed consent (IC). Exclusion criteria: previous ocular trauma or surgery; retinal or developmental disease unrelated to prematurity. Healthy control (HC) children of comparable age were recruited. Inclusion criteria: term birth, IC. Exclusion criteria: any ocular/visual abnormality, high refractive error. Intervention status (rhEPO/placebo) was unknown to examiners and subjects at examination, with examiners unblinded only after completion of all analyses. Observation procedures: Electroretinography (ERG) was performed with the RETeval device (LKC Technologies, Inc., Gaithersburg MD). Ophthalmological and orthoptic examinations excluded comorbidity in the prematurely born cohort and ocular diseases in the HC group. Main outcome measures: Scotopic and photopic ERG response amplitudes and peak times (6 amplitudes; 6 peak times). Secondary outcomes were habitual visual acuity and color discrimination performance (for descriptive summary only). RESULTS: No differences in ERG parameters between EPO (n=52; 104 eyes) and placebo (n=35; 70 eyes) subgroups were observed (all corrected p>0.05). Two cone system-mediated peak times were slightly slower in the placebo than HC (n=52; 104 eyes) subgroup (coefficient/95% confidence interval (CI) = 0.53/0.21 to 0.85 and 0.36/0.13 to 0.60; p = 0.012 and 0.022); a predominantly rod system-mediated peak time was slightly faster in the EPO than the HC subgroup (coefficient/95% CI = -4.33/-6.88 to -1.78; p = 0.011). Secondary outcomes were comparable across subgroups. CONCLUSIONS: Administration of high-dose rhEPO to infants born extremely or very preterm during the perinatal period has no measurable effects on retinal function in childhood compared to placebo. Premature birth may cause small, likely clinically insignificant effects on retinal function in childhood, which may be partially mitigated by administration of rhEPO during the perinatal period
    corecore