5 research outputs found

    Evaluation of Oxygen Interactions with Materials 3: Mission and induced environments

    Get PDF
    The Evaluation of Oxygen Interactions with Materials 3 (EOIM-3) flight experiment was developed to obtain benchmark atomic oxygen/material reactivity data. The experiment was conducted during Space Shuttle mission 46 (STS-46), which flew July 31 to August 7, 1992. Quantitative interpretation of the materials reactivity measurements requires a complete and accurate definition of the space environment exposure, including the thermal history of the payload, the solar ultraviolet exposure, the atomic oxygen fluence, and any spacecraft outgassing contamination effects. The thermal history of the payload was measured using twelve thermocouple sensors placed behind selected samples and on the EOIM-3 payload structure. The solar ultraviolet exposure history of the EOIM-3 payload was determined by analysis of the as-flown orbit and vehicle attitude combined with daily average solar ultraviolet and vacuum ultraviolet (UV/VUV) fluxes. The atomic oxygen fluence was assessed in three different ways. First, the O-atom fluence was calculated using a program that incorporates the MSIS-86 atmospheric model, the as-flown Space Shuttle trajectory, and solar activity parameters. Second, the oxygen atom fluence was estimated directly from Kapton film erosion. Third, ambient oxygen atom measurements were made using the quadrupole mass spectrometer on the EOIM-3 payload. Our best estimate of the oxygen atom fluence as of this writing is 2.3 +/- 0.3 x 10(exp 20) atoms/sq cm. Finally, results of post-flight X-ray photoelectron spectroscopy (XPS) surface analyses of selected samples indicate low levels of contamination on the payload surface

    Garden and landscape-scale correlates of moths of differing conservation status: significant effects of urbanization and habitat diversity

    Get PDF
    Moths are abundant and ubiquitous in vegetated terrestrial environments and are pollinators, important herbivores of wild plants, and food for birds, bats and rodents. In recent years, many once abundant and widespread species have shown sharp declines that have been cited by some as indicative of a widespread insect biodiversity crisis. Likely causes of these declines include agricultural intensification, light pollution, climate change, and urbanization; however, the real underlying cause(s) is still open to conjecture. We used data collected from the citizen science Garden Moth Scheme (GMS) to explore the spatial association between the abundance of 195 widespread British species of moth, and garden habitat and landscape features, to see if spatial habitat and landscape associations varied for species of differing conservation status. We found that associations with habitat and landscape composition were species-specific, but that there were consistent trends in species richness and total moth abundance. Gardens with more diverse and extensive microhabitats were associated with higher species richness and moth abundance; gardens near to the coast were associated with higher richness and moth abundance; and gardens in more urbanized locations were associated with lower species richness and moth abundance. The same trends were also found for species classified as increasing, declining and vulnerable under IUCN (World Conservation Union) criteria

    The Influence of Soil Parameters on the Impulse and Airblast Overpressure Loading above Surface-Laid and Shallow-Buried Explosives

    No full text
    The dynamic airblast, fragmentation, and soil ejecta loading environments produced by the detonation of surface-laid and shallow-buried mines are major threats to lightweight military vehicles. During the past several years, the US Army has focused considerable attention on developing improved methods for predicting the below-vehicle environment from these threats for use by vehicle/armor analysts; thereby, improving the survivability of these platforms. The US Army Engineer Research and Development Center recently completed the first year of a three-year effort to experimentally and numerically quantify the blast and fragment loading environments on vehicles due to surface and subsurface mine and IED detonations. As part of this research effort, a series of experiments was conducted to quantify the effects of soil parameters on the aboveground blast environments produced by the detonation of aboveground bottom-surface-tangent, buried top-surface-tangent, and shallow-buried 2.3-kg (5-lb) Composition C4 charges. The experiments were conducted using three different well characterized soils; 10.8% air-filled-voids (AFV) silty sand, 5.4% AFV clay, and 29.8% AFV poorly graded sand. The combined aboveground loads due to airblast and soil debris were measured by an impulse measurement device. The near-surface airblast overpressure was quantified by a series of side-on measurements above the charges at one elevation and three radial distances. This paper summarizes and compares the results of the experimental program with emphasis on defining the effect of soil parameters on the aboveground blast environment
    corecore